Mapping the visual brain: how and why

Over the past 15 years, techniques for identifying visual areas using magnetic resonance imaging (MRI) in human subjects have been applied widely to multiple populations. This review will cover the basic techniques of using functional MRI and very high-resolution structural MRI to determine boundaries between different areas of the visual cortex. Recent applications of these methods to ophthalmological patient populations are discussed, and the future potential applications of very high field strength MRI are considered.

[1]  P. Matthews,et al.  Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. , 2005, Journal of vision.

[2]  Nouchine Hadjikhani,et al.  Neural basis of prosopagnosia: An fMRI study , 2002, Human brain mapping.

[3]  M. Goodale,et al.  Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. , 2003, Brain : a journal of neurology.

[4]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[5]  Gregory C DeAngelis,et al.  Disparity Channels in Early Vision , 2007, The Journal of Neuroscience.

[6]  B. Wandell,et al.  V1 projection zone signals in human macular degeneration depend on task, not stimulus. , 2008, Cerebral cortex.

[7]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[8]  Daniel D. Dilks,et al.  Reorganization of Visual Processing in Macular Degeneration Is Not Specific to the “Preferred Retinal Locus” , 2009, The Journal of Neuroscience.

[9]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[10]  N. K. Focke,et al.  Defining Meyer's loop–temporal lobe resections, visual field deficits and diffusion tensor tractography , 2009, Brain : a journal of neurology.

[11]  Essa Yacoub,et al.  Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla , 2007, NeuroImage.

[12]  M. Fukunaga,et al.  Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast , 2010, Proceedings of the National Academy of Sciences.

[13]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[14]  A. Gouws,et al.  The Organization of the Visual Cortex in Patients with Scotomata Resulting from Lesions of the Central Retina , 2009 .

[15]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[16]  Rainer Goebel,et al.  Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients , 2001, Vision Research.

[17]  Brian A. Wandell,et al.  Plasticity and stability of visual field maps in adult primary visual cortex , 2009, Nature Reviews Neuroscience.

[18]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[20]  N. Kanwisher,et al.  Reorganization of Visual Processing in Macular Degeneration , 2005, The Journal of Neuroscience.

[21]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[22]  Kevin P. Moloney,et al.  Reorganization of visual processing is related to eccentric viewing in patients with macular degeneration. , 2008, Restorative neurology and neuroscience.

[23]  Smith Ge,et al.  A New Topographical Survey of the Human Cerebral Cortex, being an Account of the Distribution of the Anatomically Distinct Cortical Areas and their Relationship to the Cerebral Sulci. , 1907 .

[24]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[25]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[26]  J. Grafman,et al.  Imaging cortical anatomy by high‐resolution MR at 3.0T: Detection of the stripe of Gennari in visual area 17 , 2002, Magnetic resonance in medicine.

[27]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[28]  J. Horton,et al.  Quadrantic visual field defects. A hallmark of lesions in extrastriate (V2/V3) cortex. , 1991, Brain : a journal of neurology.

[29]  B. Wandell,et al.  Topographic Organization of Human Visual Areas in the Absence of Input from Primary Cortex , 1999, The Journal of Neuroscience.

[30]  Robert N Weinreb,et al.  Retinotopic organization of primary visual cortex in glaucoma: a method for comparing cortical function with damage to the optic disk. , 2007, Investigative ophthalmology & visual science.

[31]  J. S. Duncan,et al.  MR tractography predicts visual field defects following temporal lobe resection , 2005, Neurology.

[32]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[33]  Anna W. Roe,et al.  A Map for Horizontal Disparity in Monkey V2 , 2008, Neuron.

[34]  G. Holmes DISTURBANCES OF VISION BY CEREBRAL LESIONS , 1918, The British journal of ophthalmology.

[35]  Christine C. Boucard,et al.  Changes in cortical grey matter density associated with long-standing retinal visual field defects , 2009, Brain : a journal of neurology.

[36]  David C. Van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex , 2005, NeuroImage.

[37]  Taosheng Liu,et al.  Retinotopic mapping of the visual cortex using functional magnetic resonance imaging in a patient with central scotomas from atrophic macular degeneration. , 2004, Ophthalmology.