A test problem generator for the Steiner problem in graphs

In this paper we present a new binary-programming formulation for the Steiner problem in graphs (SPG), which is well known to be NP-hard. We use this formulation to generate test problems with known optimal solutions. The technique uses the KKT optimality conditions on the corresponding quadratically constrained optimization problem.

[1]  N. Maculan The Steiner Problem in Graphs , 1987 .

[2]  J. B. Rosen,et al.  Construction of nonlinear programming test problems , 1965 .

[3]  Panos M. Pardalos,et al.  Equivalent Formulations for the Steiner Problem in Graphs , 1993 .

[4]  S. Louis Hakimi,et al.  Steiner's problem in graphs and its implications , 1971, Networks.

[5]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[6]  Thomas L. Magnanti NETWORK DESIGN AND TRANSPORTATION PLANNING , 1990 .

[7]  J. Ben Rosen,et al.  Pracniques: construction of nonlinear programming test problems , 1965, Commun. ACM.

[8]  Laura A. Sanchis,et al.  On the Complexity of Test Case Generation for NP-Hard Problems , 1990, Inf. Process. Lett..

[9]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[10]  Panos M. Pardalos,et al.  Construction of test problems in quadratic bivalent programming , 1991, TOMS.

[11]  D. Du,et al.  The Steiner ratio conjecture of Gilbert and Pollak is true. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Sven Danø,et al.  Integer Linear Programming , 1974 .

[13]  M. Hanan Layout, Interconnection, and Placement , 1975, Networks.

[14]  Thomas Lengauer,et al.  Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.

[15]  Thomas L. Magnanti,et al.  Network Design and Transportation Planning: Models and Algorithms , 1984, Transp. Sci..

[16]  J. MacGregor Smith,et al.  STEINER TREES, STEINER CIRCUITS AND THE INTERFERENCE PROBLEM IN BUILDING DESIGN , 1979 .

[17]  Dana S. Richards,et al.  Steiner tree problems , 1992, Networks.

[18]  H. Pollak,et al.  Steiner Minimal Trees , 1968 .

[19]  Panos M. Pardalos Generation of large-scale quadratic programs for use as global optimization test problems , 1987, TOMS.

[20]  Pawel Winter,et al.  Steiner problem in networks: A survey , 1987, Networks.

[21]  Yash P. Aneja,et al.  An integer linear programming approach to the steiner problem in graphs , 1980, Networks.

[22]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.