Linear Temporal Logic with Until and Before on Integer Numbers, Deciding Algorithms

As specifications and verifications of concurrent systems employ Linear Temporal Logic (LTL), it is increasingly likely that logical consequence in LTL will be used in description of computations and parallel reasoning. We consider the linear temporal logic $\mathcal{LTL^{U,B}_{N,N^{-1}} (Z)}$ extending the standard LTL by operations B (before) and N−1 (previous). Two sorts of problems are studied: (i) satisfiability and (ii) description of logical consequence in $\mathcal{LTL^{U,B}_{N,N^{-1}} (Z)}$ via admissible logical consecutions (inference rules). The model checking for LTL is a traditional way of studying such logics. Most popular technique based on automata was developed by M.Vardi (cf. [39, 6]). Our paper uses a reduction of logical consecutions and formulas of LTL to consecutions of a uniform form consisting of formulas of temporal degree 1. Based on technique of Kripke structures, we find necessary and sufficient conditions for a consecution to be not admissible in $\mathcal{LTL^{U,B}_{N,N^{-1}} (Z)}$. This provides an algorithm recognizing consecutions (rules) admissible in $\mathcal{LTL^{U,B}_{N,N^{-1}} (Z)}$ by Kripke structures of size linear in the reduced normal forms of the initial consecutions. As an application, this algorithm solves also the satisfiability problem for $\mathcal{LTL^{U,B}_{N,N^{-1}} (Z)}$.

[1]  Henny B. Sipma,et al.  Alternating the Temporal Picture for Safety , 2000, ICALP.

[2]  Silvio Ghilardi,et al.  Unification in intuitionistic logic , 1999, Journal of Symbolic Logic.

[3]  Zohar Manna,et al.  Temporal Verification of Reactive Systems , 1995, Springer New York.

[4]  Vladimir V. Rybakov,et al.  A Basis in Semi‐Reduced Form for the Admissible Rules of the Intuitionistic Logic IPC , 2000 .

[5]  Amir Pnueli,et al.  Propositional Temporal Logics: Decidability and Completeness , 2000, Log. J. IGPL.

[6]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[7]  P. Lorenzen Einführung in die operative Logik und Mathematik , 1955 .

[8]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[9]  Dov M. Gabbay,et al.  Advances in Temporal Logic , 2000 .

[10]  Moshe Y. Vardi An Automata-Theoretic Approach to Linear Temporal Logic , 1996, Banff Higher Order Workshop.

[11]  Vladimir V. Rybakov Logical Consecutions in Intransitive Temporal Linear Logic of Finite Intervals , 2005, J. Log. Comput..

[12]  Paliath Narendran,et al.  Ground Temporal Logic: A Logic for Hardware Verification , 1994, CAV.

[13]  Fausto Giunchiglia,et al.  Improved Automata Generation for Linear Temporal Logic , 1999, CAV.

[14]  Vladimir V. Rybakov Modal Logics Preserving Admissible for S4 Inference Rules , 1994, CSL.

[15]  Vladimir V. Rybakov,et al.  Bases of admissible rules of the logics S4 and Int , 1985 .

[16]  Emil Jerábek,et al.  Admissible Rules of Modal Logics , 2005, J. Log. Comput..

[17]  Patrice Godefroid,et al.  Temporal logic query checking , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[18]  Michael Wooldridge,et al.  Model Checking Knowledge and Time , 2002, SPIN.

[19]  Kavita Ravi,et al.  Efficient Decision Procedures for Model Checking of Linear Time Logic Properties , 1999, CAV.

[20]  Zohar Manna,et al.  Temporal verification of reactive systems - safety , 1995 .

[21]  R. Goldblatt Logics of Time and Computation , 1987 .

[22]  D. Gabbay An Irreflexivity Lemma with Applications to Axiomatizations of Conditions on Tense Frames , 1981 .

[23]  G. Mints,et al.  Derivability of admissible rules , 1976 .

[24]  Edmund M. Clarke,et al.  Another Look at LTL Model Checking , 1994, CAV.

[25]  Vladimir V. Rybakov,et al.  Hereditarily structurally complete modal logics , 1995, Journal of Symbolic Logic.

[26]  Anil Nerode,et al.  Logical Foundations of Computer Science, International Symposium, LFCS 2009, Deerfield Beach, FL, USA, January 3-6, 2009. Proceedings , 1994, LFCS.

[27]  Vladimir V. Rybakov,et al.  Rules of inference with parameters for intuitionistic logic , 1992, Journal of Symbolic Logic.

[28]  Harvey M. Friedman,et al.  One hundred and two problems in mathematical logic , 1975, Journal of Symbolic Logic.

[29]  Philippe Schnoebelen,et al.  Temporal logic with forgettable past , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[30]  Valentin Goranko,et al.  Using the Universal Modality: Gains and Questions , 1992, J. Log. Comput..

[31]  Bruce M. Kapron,et al.  Modal sequents and definability , 1987, Journal of Symbolic Logic.

[32]  Amir Pnueli,et al.  A Deductive Proof System for CTL , 2002, CONCUR.

[33]  Vladimir V. Rybakov,et al.  Construction of an Explicit Basis for Rules Admissible in Modal System S4 , 2001, Math. Log. Q..

[34]  Vladimir V. Rybakov,et al.  Quasi-Characteristic Inference Rules for Modal Logics , 1997, LFCS.

[35]  Vladimir V. Rybakov,et al.  A criterion for admissibility of rules in the model system S4 and the intuitionistic logic , 1984 .

[36]  Kousha Etessami,et al.  A Hierarchy of Polynomial-Time Computable Simulations for Automata , 2002, CONCUR.

[37]  Ronald Harrop,et al.  Concerning formulas of the types A→B ν C,A →(Ex)B(x) in intuitionistic formal systems , 1960, Journal of Symbolic Logic.

[38]  Bernd Finkbeiner,et al.  Verifying Temporal Properties of Reactive Systems: A STeP Tutorial , 2000, Formal Methods Syst. Des..

[39]  Vladimir V. Rybakov,et al.  On Finite Model Property for Admissible Rules , 1999, Math. Log. Q..

[40]  Rosalie Iemhoff,et al.  On the admissible rules of intuitionistic propositional logic , 2001, Journal of Symbolic Logic.

[41]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[42]  Fred Krögr Temporal Logic Of Programs , 1987 .

[43]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[44]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).