Constitutive modeling for biodegradable polymers for application in endovascular stents

s in Conference Proceedings: 1) J.S. Soares, M.S. Sacks, Modeling the Enhancement of Extracellular Matrix Quantity and Quality in LargeDeformation Mechanically-Conditioned Tissue Engineering, Proceedings of the 52 Annual Technical Meeting of the Society of Engineering Science Meeting, College Station, TX, 2015. 2) J.S. Soares, A. D’Amore, J.A. Stella, W. Zhang, J.E. Mayer Jr., W.R. Wagner, M.S. Sacks, Extracting the Enhancement of Extracellular Matrix Production and Stiffness in Large-Deformation Mechanically-Conditioned Heart Valve Tissue Engineering, Proceedings of the BMES Annual Meeting, Tampa, FL, 2015. 3) J.S. Soares, J.A. Stella, A. D’Amore, W. Zhang, W.R. Wagner, J.E. Mayer Jr., M.S. Sacks, Modeling the enhancement of extracellular matrix quantity and quality in large-deformation mechanically-conditioned heart valve tissue engineering. Proceedings of the Summer Biomechanics, Bioengineering, and Biotransport Conference, SB3C2015, Snowbird Resort, UT, 2015. 4) J.S. Soares, M.S. Sacks, Modeling the enhancement of extracellular matrix quantity and quality in large-deformation mechanically-conditioned heart valve tissue engineering, Proceedings of the BMES Annual Meeting, San Antonio, TX, 2014. 5) J.S. Soares, M.S. Sacks, Modeling the role of dynamic mechanical conditioning on dense connective tissue formation in heart valve tissue engineering, 7 World Congress of Biomechanics, Boston, MA, 2014. 6) D. Bluestein, P. Zhang, C. Gao, J. Sheriff, S. Pothapragada, N. Zhang, M. Livelli, J.S. Soares, M.J. Slepian, Y. Deng, Multiscale modeling of flow induced thrombosis using dissipative particle dynamics (DPD) and coarse grained molecular dynamics (CGMD), 7 World Congress of Biomechanics, Boston, MA, 2014. 7) J.S. Soares, T.L. Bao, F. Sotiropoulos, M.S. Sacks, Modeling the role of oscillatory flow and dynamic mechanical conditioning on dense connective tissue formation in mesenchymal stem cell derived heart valve tissue engineering, Proceedings of the WCCM-ECCM-ECFD2014, Barcelona, Spain, 2014. 8) J.S. Soares, T.L. Bao, F. Sotiropoulos, M.S. Sacks, The role of oscillatory flow and dynamic mechanical conditioning on dense connective tissue formation in mesenchymal stem cell derived heart valve tissue engineering, Proceedings of the BMES 2014 Cellular and Molecular Bioengineering Conference (CMBE), La Jolla, CA, 2014. João Silva Soares Curriculum Vitae page 4 of 10 9) J.S. Soares, T.L. Bao, F. Sotiropoulos, M.S. Sacks, The role of cyclic flexure and oscillatory shear stress on mesenchymal stem cell proliferation and extracellular matrix production in engineered heart valve tissue formation, Proceedings of the BMES Annual Meeting, Seattle, WA, 2013. 10) C. Gao, P. Zhang, M. Livelli, J. Sheriff, J.S. Soares, S. Pothapragada, N. Zhang, Y. Deng, D. Bluestein, Multiscale modeling of fine-grained platelet suspension in coarse-grained shear flow using molecular dynamics and dissipative particle dynamics, Proceedings of the BMES Annual Meeting, Seattle, WA, 2013. 11) C. Gao, P. Zhang, M. Livelli, J. Sheriff, J.S. Soares, S. Pothapragada, N. Zhang, Y. Deng, D. Bluestein,Multiscale Modeling of Flow Induced Thrombogenicity with Dissipative Particle Dynamics (DPD) and Molecular Dynamics (MD), Proceedings of the ASME/FDA 2013 Frontiers in Medical Devices: Applications of Computer Modeling and Simulation, Washington, DC, 2013. 12) J.S. Soares, T.L. Bao, F. Sotiropoulos, M.S. Sacks, Modeling the role of oscillatory flow and dynamic mechanical conditioning on dense connective tissue formation in mesenchymal stem cell derived heart valve tissue engineering, Proceedings of the ASME/FDA 2013 Frontiers in Medical Devices: Applications of Computer Modeling and Simulation, Washington, DC, 2013. 13) J.S. Soares, T.L. Bao, F. Sotiropoulos, M.S. Sacks, Simulation of the role of oscillatory shear stress on mesenchymal stem cell proliferation and extracellular matrix production in engineered heart valve tissue formation, Proceedings of the ASME 2013 Summer Bioengineering Conference, Sunriver, OR, 2013. 14) P. Zhang, J. Sheriff, J.S. Soares, C. Gao, S. Pothapragada, N. Zhang, Y. Deng, D. Bluestein, Multiscale modeling of flow induced thrombogencity using dissipative particle dynamics and coarse grained molecular dynamics, Proceedings of the ASME 2013 Summer Bioengineering Conference, Sunriver, OR, 2013. 15) M.S. Sacks, J.S. Soares, Simulation of the role of oscillatory shear stress on mesenchymal stem cell proliferation and extracellular matrix production in engineered heart valve tissue formation, Proceedings of the 7 Biennial Joint Congress of the Society for Heart Valve Disease and Heart Valve Society of America, Venice, Italy, 2013. 16) J.S. Soares, M.S. Sacks, A nutrient-cell-matrix triphasic mixture model of growth of tissue engineering constructs, Proceedings of the 11th International Symposium Computer Methods in Biomechanics and Biomedical Engineering, Salt Lake City, UT, 2013. 17) D. Bluestein, J.S. Soares, P. Zhang, C. Gao, S. Pothapragada, N. Zhang, M. Slepian, Y. Deng, Multiscale modeling of flow induced thrombogenicity using dissipative particle dynamics and molecular dynamics, Proceedings of the ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology, NEMB2013, Boston, MA, 2013. 18) W-C. Chiu, M. Xenos, G. Girdhar, J.S. Soares, Y. Alemu, B. Lynch, J. Jesty, S. Einav, M. Slepian, D. Bluestein, Comparative thrombogenic potential of ventricular assist devices: the impact of device thrombogencity emulation metholdology, Proceedings of the BMES Annual Meeting, Atlanta, GA, 2012. 19) J.S. Soares, C. Gao, J. Sheriff, Y. Alemu, P. Zhang, S. Pothapragada, G. Yu, Y. Deng, D. Bluestein, Multiscale Modeling of Shear Induced Platelet Activation Using Dissipative Particle Dynamics and Molecular Dynamics, Proceedings of the BMES Annual Meeting, Atlanta, GA, 2012. 20) J.S. Soares, J. Sheriff, D. Bluestein, A mathematical model for shear-induced platelet activation in response to time dependent shear stress histories, Proceedings of the ASME 2012 Summer Bioengineering Conference, Fajardo, Porto Rico, 2012. 21) J. Sheriff, M. Xenos, J.S. Soares, J. Jesty, D. Bluestein, Evaluation of platelet activation models with dynamic shear stress in vitro experiments, Proceedings of the ASME 2012 Summer Bioengineering Conference, Fajardo, Porto Rico, 2012. 22) J.S. Soares, Modeling polymer degradation and erosion for biodegradable biomedical implant design, Proceedings of the 10 International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE2011, Benidorm, Spain, 2011. 23) J.S. Soares, Modeling polymer degradation and erosion for biodegradable biomedical implant design, Proceedings of Mathematical Fluid Mechanics and Biomedical Applications (dedicated to Prof. Adélia Sequeira on the occasion of her 60th birthday), Universidade dos Açores, Portugal, 1-3 Jun 2011. 24) J.S. Soares, P. Zunino, Modelação Multi-Escala do Processo de Degradação e Erosão de Polímeros Biodegradáveis, Livro de Actas do 4o Congresso de Nacional de Biomecânica, Coimbra, Portugal, 2011. 25) J.S. Soares, P. Zunino, A multiscale mixture model for polymer degradation and erosion, Proceedings of the ASME 2010 Summer Bioengineering Conference, Naples, FL, 2010. João Silva Soares Curriculum Vitae page 5 of 10 26) J.E. Moore, Jr., J.S. Soares, K.R. Rajagopal, Modeling of biodegradable stents subjected to physiologic loading, Proceedings of the FDA & NHLBI 3rd Annual Workshop on Computer Methods and Cardiovascular Devices: The integration of nonclinical and computer methods, Rockville, MD, 2010. 27) J.S. Soares, S. Minisini, P. Zunino, Multiscale analysis of degradable polymers: from nanoscale to macroscale modeling , Proceedings of the 4th International Symposium Mathematical and Numerical Modelling of Physiological Flows, Chia Laguna, Italy, 2010. 28) J.S. Soares, P. Zunino, A multiscale mixture approach to describe polymer degradation and erosion, Proceedings of the Endovascular Biomechanics Symposium Research, Marseille, France, 2010. 29) J.S. Soares, P. Zunino, A mathematical model for water uptake, degradation and erosion of polydisperse biodegradable polymers, Proceedings of the BMES Annual Fall Meeting, Pittsburgh, PA, 2009. 30) J.S. Soares, K.R. Rajagopal, J.E. Moore, Jr., A constitutive model for deformation induced degradation of polymers: inflation and extension of a degradable cylindrical annulus, Proceedings of the 7 EUROMECH Solid Mechanics Conference, Lisboa, Portugal, 2009. 31) J.S. Soares, J.E. Moore, Jr., K.R. Rajagopal, Constitutive model of deformation induced degradation of polymers for application in biodegradable stent design, Proceedings of the 3 International Conference on Integrity, Reliability and Failure, Porto, Portugal, 2009. 32) J.S. Soares, Constitutive modeling of biodegradable polymers for tissue engineering scaffolds, Proceedings of the 1 International Conference on Tissue Engineering, Leiria, Portugal, 2009. 33) J.S. Soares, J.E. Moore, Jr., K.R. Rajagopal, Mechanics of deformation-induced degradation of poly(L-lactic acid) endovascular stents, Proceedings of the ASME Summer Bioengineering Conference, Lake Tahoe, CA, 2009. 34) J. S. Soares, M.A. Grunlan, J.E. Moore, Jr., K.R. Rajagopal, Constitutive modeling for biodegradable nonlinear polymers with application in biodegradable endovascular stents, Proceedings of the HSEMB, Houston, TX, 2008. 35) J.E. Moore, Jr., M. Moreno, J.S. Soares, L.H. Timmins, C. Meyer, Stented artery biomechanics and design rationale for biodegradation, Proceedings of the 44 Annual Technical Meeting of the Society of Engineering Science Meeting, College Station, TX, 2007. 36) J.S. Soares, Constitutive modeling of biodegradable nonlinear polymers for application in the medical field, Proceedings of the 44 Annual Technical Meeting of the Society of Engineering Science Meeting, College Station, TX, 2007. 37) J.S. Soares, J.E. Moore, Jr., K.R. Rajagopal, Constitutive model of biodegra

[1]  Jean-Luc Guermond,et al.  Eléments finis : théorie, applications, mise en œuvre , 2002 .

[2]  S. Saha,et al.  Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): Effects of stereocomplex as nucleating agent: [Polymer 47 (2006) 3826-3837] , 2006 .

[3]  Michael Joner,et al.  Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. , 2006, Journal of the American College of Cardiology.

[4]  C. Truesdell,et al.  Essays in the History of Mechanics , 1968 .

[5]  J. Bélair,et al.  Structural modeling of drug release from biodegradable porous matrices based on a combined diffusion/erosion process. , 2003, International journal of pharmaceutics.

[6]  Joachim Mühling,et al.  Biodegradation and tissue-reaction in a long-term implantation study of poly(L-lactide) , 1994 .

[7]  E. Grube,et al.  Drug eluting stents: initial experiences , 2002, Zeitschrift für Kardiologie.

[8]  A A Sauren,et al.  Parameter estimation using the quasi-linear viscoelastic model proposed by Fung. , 1984, Journal of biomechanical engineering.

[9]  A. Shyichuk,et al.  A determination of rates ratio of simultaneous crosslinking and scission from MWD shape , 1995 .

[10]  H. Uehata,et al.  Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. , 2000, Circulation.

[11]  Robert C. Eberhart,et al.  Expandable Bioresorbable Endovascular Stent. I. Fabrication and Properties , 2003, Annals of Biomedical Engineering.

[12]  C T Laurencin,et al.  Toxicity, biodegradation and elimination of polyanhydrides. , 2002, Advanced drug delivery reviews.

[13]  Marco Valgimigli,et al.  The unrestricted use of paclitaxel- versus sirolimus-eluting stents for coronary artery disease in an unselected population: one-year results of the Taxus-Stent Evaluated at Rotterdam Cardiology Hospital (T-SEARCH) registry. , 2005, Journal of the American College of Cardiology.

[14]  S. Isoyama,et al.  Use of everolimus-eluting stent with a bioresorbable polymer coating for treatment of recurrent in-stent restenosis. , 2005, The Journal of invasive cardiology.

[15]  M. Deng,et al.  Effect of load and temperature on in vitro degradation of poly(glycolide-co-L-lactide) multifilament braids. , 2005, Biomaterials.

[16]  David J Cohen,et al.  Stent Thrombosis After Successful Sirolimus-Eluting Stent Implantation , 2004, Circulation.

[17]  A. G. James,et al.  Strain energy functions of rubber. I. Characterization of gum vulcanizates , 1975 .

[18]  Moon Suk Kim,et al.  Local drug delivery system using biodegradable polymers , 2003 .

[19]  P Nieuwenhuis,et al.  Enzymatic activity toward poly(L-lactic acid) implants. , 1990, Journal of biomedical materials research.

[20]  Kumbakonam R. Rajagopal,et al.  Mechanical Response of Polymers: An Introduction , 2000 .

[21]  C. Booth The mechanical degradation of polymers , 1963 .

[22]  Patrick W Serruys,et al.  Drug-eluting stents. The third revolution in percutaneous coronary intervention. , 2005, Italian heart journal : official journal of the Italian Federation of Cardiology.

[23]  D. W. Saunders,et al.  Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[24]  A Haverich,et al.  Left main coronary artery fistula exiting into the right atrium , 2003, Heart.

[25]  J. Mano,et al.  Glass transition dynamics and structural relaxation of PLLA studied by DSC : Influence of crystallinity , 2005 .

[26]  C. Migliaresi,et al.  Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights : effect of thermal treatments , 1991 .

[27]  D. Katritsis,et al.  Subacute thrombosis following implantation of zotarolimus-eluting stent. , 2006, Hellenic journal of cardiology : HJC = Hellenike kardiologike epitheorese.

[28]  Anne Hiltner,et al.  Biodegradation of polyurethane under fatigue loading. , 2003, Journal of biomedical materials research. Part A.

[29]  C. M. Agrawal,et al.  Evaluation of poly(L-lactic acid) as a material for intravascular polymeric stents. , 1992, Biomaterials.

[30]  T. Tammela,et al.  A bioabsorbable self-expandable, self-reinforced poly-L-lactic acid urethral stent for recurrent urethral strictures: long-term results. , 2002, Journal of endourology.

[31]  N. Yoshie,et al.  Higher-order structures and mechanical properties of stereocomplex-type poly(lactic acid) melt spun fibers , 2006 .

[32]  Ted Belytschko,et al.  Finite Elements, An Introduction , 1982 .

[33]  A. Kotliar,et al.  Evaluation of molecular size distributions and molecular weight averages resulting from random crosslinking and chain-scission processes , 1961 .

[34]  Kumbakonam R. Rajagopal,et al.  The elasticity of elasticity , 2007 .

[35]  Kumbakonam R. Rajagopal,et al.  An Introduction to the Mechanics of Fluids , 1999 .

[36]  Millard F. Beatty,et al.  A theory of stress-softening in incompressible isotropic materials , 2000 .

[37]  H Shimokawa,et al.  Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs in vivo. , 1998, Journal of the American College of Cardiology.

[38]  D. C. Stouffer,et al.  A theory of material divagation , 1978 .

[39]  Renu Virmani,et al.  Morphological Predictors of Restenosis After Coronary Stenting in Humans , 2002, Circulation.

[40]  Clifford Ambrose Truesdell,et al.  A first course in rational continuum mechanics , 1976 .

[41]  H. Uehata,et al.  Biodegradable Polymeric Stents. , 2001, Current interventional cardiology reports.

[42]  J. Criscione A Constitutive Framework for Tubular Structures that Enables a Semi-inverse Solution to Extension and Inflation , 2004 .

[43]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[44]  Arun R. Srinivasa,et al.  Mechanics of the inelastic behavior of materials—part 1, theoretical underpinnings , 1998 .

[45]  D. Campbell,et al.  Free-radical formation in uniaxially stressed nylon , 1968 .

[46]  João S. Soares,et al.  Constitutive Framework for Biodegradable Polymers with Applications to Biodegradable Stents , 2008, ASAIO journal.

[47]  A. Pennings,et al.  Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers , 1990 .

[48]  Meital Zilberman,et al.  Protein-loaded bioresorbable fibers and expandable stents: Mechanical properties and protein release. , 2004, Journal of biomedical materials research. Part B, Applied biomaterials.

[49]  J. Reddy An introduction to nonlinear finite element analysis , 2004 .

[50]  W Rutsch,et al.  Heparin-coated Palmaz-Schatz stents in human coronary arteries. Early outcome of the Benestent-II Pilot Study. , 1996, Circulation.

[51]  Nuo Wang,et al.  Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: Biodegradation , 2001, Journal of biomaterials science. Polymer edition.

[52]  R. G. Sinclair The Case for Polylactic Acid as a Commodity Packaging Plastic , 1996 .

[53]  P Laippala,et al.  Viscoelastic memory and self-expansion of self-reinforced bioabsorbable stents. , 2002, Biomaterials.

[54]  J F Orr,et al.  Degradation of poly-L-lactide. Part 2: Increased temperature accelerated degradation , 2004, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[55]  D. Browarzik,et al.  Application of Continuous Kinetics to Polymer Degradation , 1996 .

[56]  S. Pocock,et al.  Incidence , , 2018 .

[57]  Millard F. Beatty,et al.  A new phenomenological model for stress-softening in elastomers , 2002 .

[58]  A. Wineman,et al.  Inhomogeneity in a Sheared Elastomeric Layer as a Result of Thermally Induced Scission and Healing , 2004 .

[59]  A. Wineman,et al.  Combined deformation- and temperature-induced scission in a rubber cylinder in torsion , 2007 .

[60]  John A Ormiston,et al.  First‐in‐human implantation of a fully bioabsorbable drug‐eluting stent: The BVS poly‐L‐lactic acid everolimus‐eluting coronary stent , 2007, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[61]  M. Goldstein,et al.  Self-expandable chitosan stent: design and preparation. , 2001, Biomaterials.

[62]  Anne Hiltner,et al.  Effect of strain and strain rate on fatigue-accelerated biodegradation of polyurethane. , 2003, Journal of biomedical materials research. Part A.

[63]  P. Flory Principles of polymer chemistry , 1953 .

[64]  R. Quintanilla,et al.  The Importance of the Compatibility of Nonlinear Constitutive Theories With Their Linear Counterparts , 2007 .

[65]  R E Baier,et al.  Investigation of three-surface properties of several metals and their relation to blood compatibility. , 1972, Journal of biomedical materials research.

[66]  Antonio Colombo,et al.  Mechanism of Late In-Stent Restenosis After Implantation of a Paclitaxel Derivate–Eluting Polymer Stent System in Humans , 2002, Circulation.

[67]  H. Benninga,et al.  A History of Lactic Acid Making: A Chapter in the History of Biotechnology , 1990 .

[68]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[69]  Ciro Indolfi,et al.  Sirolimus-eluting vs uncoated stents for prevention of restenosis in small coronary arteries: a randomized trial. , 2004 .

[70]  Kumbakonam R. Rajagopal,et al.  Modeling of Deformation-Accelerated Breakdown of Polylactic Acid Biodegradable Stents , 2010 .

[71]  L. Buellesfeld,et al.  Rapamycin Analogs for Stent-Based Local Drug Delivery , 2004, Herz.

[72]  A. Joshi,et al.  Dynamics of controlled release from bioerodible matrices , 1991 .

[73]  Mary E. Russell,et al.  TAXUS I: Six- and Twelve-Month Results From a Randomized, Double-Blind Trial on a Slow-Release Paclitaxel-Eluting Stent for De Novo Coronary Lesions , 2003, Circulation.

[74]  Kumbakonam R. Rajagopal,et al.  A CONSTITUTIVE EQUATION FOR NONLINEAR SOLIDS WHICH UNDERGO DEFORMATION INDUCED MICROSTRUCTURAL CHANGES , 1992 .

[75]  Jeffrey W Moses,et al.  Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. , 2003, The New England journal of medicine.

[76]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[77]  S. Marx,et al.  Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. , 1995, Circulation research.

[78]  Gerhard Ziemer,et al.  Sirolimus-Eluting Stents for the Treatment of Obstructive Superficial Femoral Artery Disease: Six-Month Results , 2002, Circulation.

[79]  S Marx,et al.  Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. , 1999, Circulation.

[80]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[81]  Willem J. van der Giessen,et al.  Coronary stenting with polymer-coated and uncoated self-expanding endoprostheses in pigs , 1992 .

[82]  J. Palmaz,et al.  Balloon-expandable intravascular stent. , 1988, AJR. American journal of roentgenology.

[83]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[84]  J. Humphrey,et al.  Biological Growth and Remodeling: A Uniaxial Example with Possible Application to Tendons and Ligaments , 2003 .

[85]  Gary K. Patterson,et al.  Mechanical degradation of high molecular weight polymers in dilute solution , 1979 .

[86]  H. Kausch,et al.  GPC Data Interpretation in Mechanochemical Polymer Degradation , 1998 .

[87]  A constitutive representation for linear aging, environmental-dependent viscoelastic materials , 1972 .

[88]  M. Leon,et al.  Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. , 1996, Circulation.

[89]  Sharat Chand Prasad,et al.  Constitutive modeling of creep of single crystal superalloys , 2006 .

[90]  John C. Criscione,et al.  Stented artery biomechanics and device design optimization , 2007, Medical & Biological Engineering & Computing.

[91]  Robert Langer,et al.  Modeling of Polymer Erosion , 1993 .

[92]  M K O'Malley,et al.  Intimal hyperplasia. , 1992, European journal of vascular surgery.

[93]  Robert Langer,et al.  Advances in tissue engineering. , 2004, Current topics in developmental biology.

[94]  D. J. Harmon,et al.  Degradation of natural rubber during mill mastication , 1966 .

[95]  F Litvack,et al.  Localized Arterial Wall Drug Delivery From a Polymer‐Coated Removable Metallic Stent: Kinetics, Distribution, and Bioactivity of Forskolin , 1994, Circulation.

[96]  Christopher P. Cheng,et al.  In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. , 2006, Journal of vascular and interventional radiology : JVIR.

[97]  A. Göpferich,et al.  Erosion of composite polymer matrices. , 1997, Biomaterials.

[98]  E J Topol,et al.  Experimental models of coronary artery restenosis. , 1992, Journal of the American College of Cardiology.

[99]  In-Joo Chin,et al.  Theoretical prediction of weight loss and molecular weight during random chain scission degradation of polymers , 1997 .

[100]  E J Topol,et al.  Local drug delivery for the prevention of restenosis. Fact, fancy, and future. , 1994, Circulation.

[101]  D. Holmes,et al.  Coronary artery stents. , 2000, JAMA.

[102]  J.W.A. van den Berg,et al.  Phase behavior of polylactides in solvent–nonsolvent mixtures , 1996 .

[103]  Alan S. Wineman,et al.  Large axially symmetric stretching of a nonlinear viscoelastic membrane , 1972 .

[104]  K. W. Scott Criteria for random degradation of linear polymers , 2009 .

[105]  K P Schmitz,et al.  THE IMPACT OF MATERIAL CHARACTERISTICS ON THE MECHANICAL PROPERTIES OF A POLY(L-LACTIDE) CORONARY STENT , 2002, Biomedizinische Technik. Biomedical engineering.

[106]  H Laufman,et al.  Synthetic absorable sutures. , 1977, Surgery, gynecology & obstetrics.

[107]  Tuan Q. Nguyen,et al.  Kinetics of mechanochemical degradation by gel permeation chromatography , 1994 .

[108]  John C. Criscione,et al.  Rivlin's Representation Formula is Ill-Conceived for the Determination of Response Functions via Biaxial Testing , 2003 .

[109]  R. Langer,et al.  A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. , 1997, Journal of pharmaceutical sciences.

[110]  K. Rajagopal,et al.  A thermodynamic framework for the study of crystallization in polymers , 2002 .

[111]  S. Hyon,et al.  Crystal transformation and development of tensile properties upon drawing of poly(L-lactic acid) by solid-state coextrusion : Effects of molecular weight , 2006 .

[112]  E J Topol,et al.  Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. , 1997, Journal of the American College of Cardiology.

[113]  Ziliang Zhou Creep and recovery of nonlinear viscoelastic materials of the differential type , 1991 .

[114]  M. Labinaz,et al.  Biodegradable stents: the future of interventional cardiology? , 1995, Journal of interventional cardiology.

[115]  F Joffre,et al.  Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. , 1987, The New England journal of medicine.

[116]  S Glagov,et al.  Mechanical functional role of non-atherosclerotic intimal thickening. , 1993, Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering.

[117]  M. Leon,et al.  Overview of pharmacology and clinical trials program with the zotarolimus-eluting endeavor stent. , 2006, Journal of interventional cardiology.

[118]  The Mullins Effect in a Pure Shear , 2000 .

[119]  A. Göpferich,et al.  Bioerodible implants with programmable drug release , 1997 .

[120]  J Mühling,et al.  Poly(L-lactide): a long-term degradation study in vivo. I. Biological results. , 1993, Biomaterials.

[121]  Kumbakonam R. Rajagopal,et al.  A note on viscoelastic materials that can age , 2004 .

[122]  John Rose,et al.  The effect of crystallinity on the deformation mechanism and bulk mechanical properties of PLLA. , 2005, Biomaterials.

[123]  R. Schwartz,et al.  Pathophysiology of restenosis: interaction of thrombosis, hyperplasia, and/or remodeling. , 1998, The American journal of cardiology.

[124]  M. Leon,et al.  In-stent restenosis: the Washington Hospital Center experience. , 1998, The American journal of cardiology.

[125]  Gary K. Patterson,et al.  Mechanical degradation of dilute solutions of high polymers in capillary tube flow , 1975 .

[126]  Kumbakonam R. Rajagopal,et al.  THERMODYNAMIC FRAMEWORK FOR THE CONSTITUTIVE MODELING OF ASPHALT CONCRETE: THEORY AND APPLICATIONS , 2004 .

[127]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1987 .

[128]  Malte Kelm,et al.  Incidence and predictors of target vessel revascularization and clinical event rates of the sirolimus-eluting coronary stent (results from the prospective multicenter German Cypher Stent Registry). , 2005, The American journal of cardiology.

[129]  Linear viscoelastic materials with environmental dependent properties , 1971 .

[130]  S Glagov,et al.  Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. , 1994, Atherosclerosis.

[131]  J. Siepmann,et al.  Mathematical modeling of bioerodible, polymeric drug delivery systems. , 2001, Advanced drug delivery reviews.

[132]  L. Buellesfeld,et al.  ABT-578-Eluting Stents , 2004, Herz.

[133]  P. Gruber,et al.  Polylactic Acid Technology , 2000 .

[134]  L. Buellesfeld,et al.  Everolimus for stent-based intracoronary applications. , 2004, Reviews in cardiovascular medicine.

[135]  S Glagov,et al.  Intimal hyperplasia, vascular modeling, and the restenosis problem. , 1994, Circulation.

[136]  D. Ku,et al.  Pulsatile flow in the human left coronary artery bifurcation: average conditions. , 1996, Journal of biomechanical engineering.

[137]  Thomas Zeller,et al.  Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: the SIROCCO II trial. , 2005, Journal of vascular and interventional radiology : JVIR.

[138]  Michel Vert,et al.  Complexity of the hydrolytic degradation of aliphatic polyesters , 1997 .

[139]  A. Göpferich,et al.  Why degradable polymers undergo surface erosion or bulk erosion. , 2002, Biomaterials.

[140]  S. Bölükbas,et al.  Drug-eluting Stents , 2009, Der Chirurg.

[141]  M. Azevedo,et al.  TDP-43 toxicity and the usefulness of junk , 2012, Nature Genetics.

[142]  W. J. van der Giessen,et al.  Mechanisms of drug loading and release kinetics. , 1998, Seminars in interventional cardiology : SIIC.

[143]  E. Topol,et al.  Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. , 1996, Circulation.

[144]  S. Hyon,et al.  Crystal transformation from the α- to the β-form upon tensile drawing of poly(l-lactic acid) , 2004 .

[145]  A. B. Bestul Evidence for Mechanical Shear Degradation of High Polymers , 1957 .

[146]  P. Serruys,et al.  A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. , 2002, The New England journal of medicine.

[147]  C M Agrawal,et al.  Deformation characteristics of a bioabsorbable intravascular stent. , 1992, Investigative radiology.

[148]  Joel L. Berry,et al.  Fluid and Solid Mechanical Implications of Vascular Stenting , 2002, Annals of Biomedical Engineering.

[149]  Takuji Nakamura,et al.  Biodegradable stents as a platform to drug loading , 2003, International journal of cardiovascular interventions.

[150]  W. Edwards,et al.  Polymeric stenting in the porcine coronary artery model: differential outcome of exogenous fibrin sleeves versus polyurethane-coated stents. , 1994, Journal of the American College of Cardiology.

[151]  J J Wentzel,et al.  Relationship Between Neointimal Thickness and Shear Stress After Wallstent Implantation in Human Coronary Arteries , 2001, Circulation.

[152]  J. I. Brauman Polymers , 1991, Science.

[153]  M. Goosen,et al.  Role of polymers in improving the results of stenting in coronary arteries. , 1996, Biomaterials.

[154]  D. Ku,et al.  Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation between Plaque Location and Low and Oscillating Shear Stress , 1985, Arteriosclerosis.

[155]  H. Bienert,et al.  Development of a New Biodegradable Intravascular Polymer Stent with Simultaneous Incorporation of Bioactive Substances , 1999, The International journal of artificial organs.

[156]  Catia Bastioli,et al.  Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties , 1996 .

[157]  Etienne Schacht,et al.  Biocompatibility of biodegradable and nonbiodegradable polymer-coated stents implanted in porcine peripheral arteries , 1995, CardioVascular and Interventional Radiology.

[158]  B. Bernstein,et al.  The Stress Clock Function in Viscoelasticity , 1980 .

[159]  Julio C. Palmaz,et al.  Clinical Experience With the Palmaz‐Schatz Coronary Stent: Initial Results of a Multicenter Study , 1991, Circulation.

[160]  Kent J. Voorhees,et al.  Hydrolysis of Polylactic Acid (PLA) and Polycaprolactone (PCL) in Aqueous Acetonitrile Solutions: Autocatalysis , 1998 .

[161]  Claudio Migliaresi,et al.  Biodegradable fibres of poly(L-lactic acid) produced by melt spinning , 1997 .

[162]  K. Kannan A note on aging of a viscoelastic cylinder , 2007, Comput. Math. Appl..

[163]  W Rutsch,et al.  A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. , 1994, The New England journal of medicine.

[164]  Muzaffer Degertekin,et al.  TAXUS III Trial: In-Stent Restenosis Treated With Stent-Based Delivery of Paclitaxel Incorporated in a Slow-Release Polymer Formulation , 2003, Circulation.

[165]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[166]  A. Wineman,et al.  Chemorheological Relaxation, Residual Stress, and Permanent Set Arising in Radial Deformation of Elastomeric Hollow Spheres , 1996 .

[167]  J M Brady,et al.  Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. , 1977, Journal of biomedical materials research.

[168]  P. Teirstein,et al.  A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. , 1994, The New England journal of medicine.

[169]  O. Saito On the Effect of High Energy Radiation to Polymers I. Cross-linking and Degradation , 1958 .

[170]  A. Göpferich,et al.  Polymer degradation and erosion : mechanisms and applications , 1996 .

[171]  K. Rajagopal,et al.  A thermodynamic frame work for rate type fluid models , 2000 .

[172]  Michel Vert,et al.  Morphological changes resulting from the hydrolytic degradation of stereocopolymers derived from L- and DL-lactides , 1994 .

[173]  D. Williams,et al.  Biodegradation of surgical polymers , 1982 .

[174]  James E. Moore,et al.  Biodegradable Stents: Biomechanical Modeling Challenges and Opportunities , 2010 .

[175]  Pertti Törmälä,et al.  Biodegradation of the Copolymeric Polylactide Stent , 2001, Journal of Vascular Research.

[176]  J J Wentzel,et al.  Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. , 2000, Journal of biomechanics.

[177]  J. Tarbell,et al.  A study of the wall shear rate distribution near the end-to-end anastomosis of a rigid graft and a compliant artery. , 1994, Journal of biomechanics.

[178]  F. Dai A study on torsion of a non-linear viscoelastic slab about non-coincident axes , 1993 .

[179]  K. Rajagopal,et al.  Simulation of fiber spinning including flow-induced crystallization , 2005 .

[180]  M. Schaldach,et al.  A Polyhydroxybutyrate Biodegradable Stent: Preliminary Experience in the Rabbit , 2002, CardioVascular and Interventional Radiology.

[181]  M. Dake,et al.  Standardized evaluation and reporting of stent fractures in clinical trials of noncoronary devices , 2007, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[182]  Arun R. Srinivasa,et al.  On the thermomechanics of shape memory wires , 1999 .

[183]  C. M. Agrawal,et al.  Orthopaedic applications for PLA-PGA biodegradable polymers. , 1998, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[184]  Keiji Igaki,et al.  A Biodegradable Poly‐l‐lactic Acid Coronary Stent in the Porcine Coronary Artery , 1999 .

[185]  Toshio Hayashi,et al.  BIODEGRADABLE POLYMERS FOR BIOMEDICAL USES , 1994 .

[186]  Patrick W Serruys,et al.  Unrestricted Utilization of Sirolimus-Eluting Stents Compared With Conventional Bare Stent Implantation in the “Real World”: The R apamycin-E luting S tent E valuated A t R otterdam C ardiology H ospital (RESEARCH) Registry , 2004, Circulation.

[187]  J. Mano Study of the segmental dynamics in semi-crystalline poly(lactic acid) using mechanical spectroscopies. , 2005, Macromolecular bioscience.

[188]  L. Archer,et al.  Principles of Polymer Systems , 1982 .

[189]  J. Verdu,et al.  Lifetime prediction in the hydrolytic ageing of polyesters , 1995 .

[190]  S L Woo,et al.  Mathematical modeling of ligaments and tendons. , 1993, Journal of biomechanical engineering.

[191]  Arun R. Srinivasa,et al.  Mechanics of the inelastic behavior of materials. Part II: inelastic response , 1998 .

[192]  Hans J. Lehermeier,et al.  Thermal and Rheological Properties of Commercial-Grade Poly(Lactic Acid)s , 2000 .

[193]  A. Srinivasa,et al.  Diffusion of a fluid through an elastic solid undergoing large deformation , 2004 .

[194]  Elma J. Gussenhoven,et al.  Mechanical features andin vivo imaging of a polymer stent , 1993, The International Journal of Cardiac Imaging.

[195]  E. Edelman,et al.  Pathobiologic responses to stenting. , 1998, The American journal of cardiology.

[196]  Arun R. Srinivasa,et al.  On the shear and bending of a degrading polymer beam , 2007 .

[197]  D. Faxon,et al.  Restenosis after percutaneous transluminal coronary angioplasty: have we been aiming at the wrong target? , 1995, Journal of the American College of Cardiology.

[198]  R. Langer,et al.  Drug delivery and targeting. , 1998, Nature.

[199]  I. Ward,et al.  Structure and mechanical properties of poly(L‐lactic acid) crystals and fibers , 2007 .

[200]  A. Wineman,et al.  Chemorheological response of elastomers at elevated temperatures: Experiments and simulations , 2005 .

[201]  M. Eisenberg,et al.  Coated stents for the prevention of restenosis: Part I. , 2002, Circulation.

[202]  J. Tardif,et al.  Biocompatibility aspects of new stent technology. , 1998, Journal of the American College of Cardiology.

[203]  J Mühling,et al.  Poly(L-lactide): a long-term degradation study in vivo. Part III. Analytical characterization. , 1993, Biomaterials.

[204]  A. Wineman,et al.  Non-uniform extension of a non-linear viscoelastic slab , 1992 .

[205]  H Bernstein,et al.  Effects of metal salts on poly(DL-lactide-co-glycolide) polymer hydrolysis. , 1997, Journal of biomedical materials research.

[206]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[207]  S. Li,et al.  Further investigations on the hydrolytic degradation of poly (DL-lactide). , 1999, Biomaterials.

[208]  E. Edelman,et al.  Endovascular stent design dictates experimental restenosis and thrombosis. , 1995, Circulation.

[209]  P. Fitzgerald,et al.  Effect of everolimus-eluting stents in different vessel sizes (from the pooled FUTURE I and II trials). , 2006, The American journal of cardiology.

[210]  Achim Gqpferich,et al.  Mechanisms of Polymer Degradation and Elimination , 1998 .

[211]  R A Schatz,et al.  Introduction to intravascular stents. , 1988, Cardiology clinics.

[212]  Michael R Moreno,et al.  Effects of stent design parameters on normal artery wall mechanics. , 2006, Journal of biomechanical engineering.

[213]  S. M. Li,et al.  Bioresorbability and biocompatibility of aliphatic polyesters , 1992 .

[214]  E. Montroll,et al.  Theory of Depolymerization of Long Chain Molecules , 1940 .

[215]  T. G. Rogers,et al.  A non-linear integral representation for viscoelastic behaviour , 1968 .

[216]  J. Ferry Viscoelastic properties of polymers , 1961 .

[217]  D Schwartz,et al.  A Cascade Model for Restenosis: A Special Case of Atherosclerosis Progression , 1992, Circulation.

[218]  P. R. Pinnock,et al.  The mechanical properties of solid polymers , 1966 .

[219]  S. F. Lin,et al.  Influence of balloon size on initial success, acute complications, and restenosis after percutaneous transluminal coronary angioplasty. A prospective randomized study. , 1988, Circulation.

[220]  S. Hyon,et al.  Preparation of oriented β‐form poly(L‐lactic acid) by solid‐state extrusion , 2002 .

[221]  William S. Slaughter The Linearized Theory of Elasticity , 2001 .

[222]  W. Wooster,et al.  Crystal structure of , 2005 .

[223]  Ziliang Zhou Creep and stress relaxation of an incompressible viscoelastic material of the rate type , 1991 .

[224]  Arun R. Srinivasa,et al.  Inelastic behavior of materials. Part II. Energetics associated with discontinuous deformation twinning , 1997 .

[225]  Minna Kellomäki,et al.  Drug-Eluting Biodegradable Poly-D/L-Lactic Acid Vascular Stents: An Experimental Pilot Study , 2005, Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists.

[226]  S T Li,et al.  A new bioabsorbable intravascular stent: in vitro assessment of hemodynamic and morphometric characteristics. , 1992, Journal of interventional cardiology.

[227]  J. Douglas,et al.  Influence of the methodology of percutaneous transluminal coronary angioplasty on restenosis. , 1987, The American journal of cardiology.

[228]  Minna Kellomäki,et al.  Tissue biocompatibility of new biodegradable drug-eluting stent materials , 2007, Journal of materials science. Materials in medicine.

[229]  S. Hossainy,et al.  Modeling of degradation and drug release from a biodegradable stent coating. , 2007, Journal of biomedical materials research. Part A.

[230]  R C Eberhart,et al.  In vitro hemocompatibility studies of drug-loaded poly-(L-lactic acid) fibers. , 2003, Biomaterials.

[231]  Arun R. Srinivasa,et al.  On the inelastic behavior of solids — Part 1: Twinning , 1995 .

[232]  Jose-Ramon Sarasua,et al.  Crystallinity and mechanical properties of optically pure polylactides and their blends , 2005 .

[233]  J. Staggs Modelling random scission of linear polymers , 2002 .

[234]  Tz. Ivanova,et al.  Role of the molecular weight and the composition on the hydrolysis kinetics of monolayers of poly(α-hydroxy acid)s , 1999 .

[235]  A. Kastrati,et al.  Long-term outcome after coronary stenting , 2000, Current controlled trials in cardiovascular medicine.

[236]  D. H. Campen,et al.  The constitutive behaviour of passive heart muscle tissue: a quasi-linear viscoelastic formulation. , 1991, Journal of biomechanics.

[237]  L. Gaboury,et al.  Infection with fatal outcome after endovascular metallic stent placement. , 1994, Radiology.

[238]  K. Nelson,et al.  Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers. , 2003, Tissue engineering.

[239]  M Talja,et al.  Biodegradable urethral stents , 2003, BJU international.

[240]  P D Verdouw,et al.  Development of a polymer endovascular prosthesis and its implantation in porcine arteries. , 1992, Journal of interventional cardiology.

[241]  A. Emsley,et al.  Computer modelling of the degradation of linear polymers , 1995 .

[242]  João S Soares,et al.  Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus , 2010, Biomechanics and modeling in mechanobiology.

[243]  R E Vlietstra,et al.  Percutaneous Polymeric Stents in Porcine Coronary Arteries: Initial Experience With Polyethylene Terephthalate Stents , 1992, Circulation.

[244]  R. Ogden,et al.  A pseudo–elastic model for the Mullins effect in filled rubber , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[245]  A continuum theory of degrading elastic solids with application to stress corrosion , 1975 .

[246]  Arun R. Srinivasa,et al.  On the thermomechanics of materials that have multiple natural configurations Part I: Viscoelasticity and classical plasticity , 2004 .

[247]  Y. Git,et al.  Mathematical Modelling and Computer Simulation of Linear Polymer Degradation: Simple Scissions , 2004 .

[248]  Michael J Lipinski,et al.  The current and future role of percutaneous coronary intervention in patients with coronary artery disease. , 2004, Journal of interventional cardiology.

[249]  A. Wineman,et al.  A Correspondence Principle for Scission-Induced Stress Relaxation in Elastomeric Components , 2004 .

[250]  R Langer,et al.  Erosion kinetics of hydrolytically degradable polymers. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[251]  P. Serruys,et al.  Biodegradable stents. , 2008, Minerva cardioangiologica.

[252]  J F Orr,et al.  Degradation of poly-L-lactide. Part 1: in vitro and in vivo physiological temperature degradation , 2004, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[253]  Katrin Sternberg,et al.  Mechanical properties of laser cut poly(L-lactide) micro-specimens: implications for stent design, manufacture, and sterilization. , 2005, Journal of biomechanical engineering.

[254]  P. de Santis,et al.  Molecular conformation of poly(S‐lactic acid) , 1968, Biopolymers.

[255]  J F Orr,et al.  Processing, annealing and sterilisation of poly-L-lactide. , 2004, Biomaterials.

[256]  C. Dotter,et al.  Transluminal angioplasty: a long view. , 1980, Radiology.

[257]  Kumbakonam R. Rajagopal,et al.  Theoretical Modeling of Cyclically Loaded, Biodegradable Cylinders , 2007 .

[258]  Robert C. Eberhart,et al.  Bioresorbable Microporous Stents Deliver Recombinant Adenovirus Gene Transfer Vectors to the Arterial Wall , 1998, Annals of Biomedical Engineering.

[259]  B. Wolf,et al.  Degradation of chain molecules. 1. Exact solution of the kinetic equations , 1981 .

[260]  Matthew H Samore,et al.  Hypersensitivity cases associated with drug-eluting coronary stents: a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) project. , 2006, Journal of the American College of Cardiology.

[261]  Ray W. Ogden,et al.  A theory of stress softening of elastomers based on finite chain extensibility , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[262]  Alan Wineman,et al.  Nonlinear viscoelastic membranes , 2007, Comput. Math. Appl..

[263]  G. Wills Cincinnatus: George Washington and the Enlightenment , 1984 .

[264]  H De Geest,et al.  Biocompatibility of polymer-coated oversized metallic stents implanted in normal porcine coronary arteries. , 1995, Atherosclerosis.

[265]  U. Saravanan,et al.  On the Role of Inhomogeneities in the Deformation of Elastic Bodies , 2003 .

[266]  Michael R. Moreno,et al.  Platelet Adhesion to Simulated Stented Surfaces , 2003, Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists.

[267]  David Williams,et al.  The effect of applied strain on the degradation of absorbable suture in vitro , 1993 .

[268]  M. Beijk,et al.  XIENCE V everolimus-eluting coronary stent system: a novel second generation drug-eluting stent , 2007, Expert review of medical devices.

[269]  I. Iakovou,et al.  Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. , 2005, JAMA.

[270]  F. Schwarz,et al.  Clinical experiences using everolimus-eluting stents in patients with coronary artery disease. , 2004, Journal of interventional cardiology.

[271]  Yoshito Ikada,et al.  Thermal characterization of polylactides , 1988 .

[272]  W S Pietrzak,et al.  Bioabsorbable Polymer Science for the Practicing Surgeon , 1997, The Journal of craniofacial surgery.

[273]  P. Fitzgerald,et al.  Randomized, Double-Blind, Multicenter Study of the Endeavor Zotarolimus-Eluting Phosphorylcholine-Encapsulated Stent for Treatment of Native Coronary Artery Lesions: Clinical and Angiographic Results of the ENDEAVOR II Trial , 2006, Circulation.

[274]  Y. Ikada,et al.  Effects of residual monomer on the degradation of DL‐lactide polymer , 1998 .

[275]  A. Spencer Continuum Mechanics , 1967, Nature.

[276]  T. Fischell,et al.  Polymer coatings for stents. Can we judge a stent by its cover? , 1996, Circulation.

[277]  J. Lunt Large-scale production, properties and commercial applications of polylactic acid polymers , 1998 .

[278]  P. Fitzgerald,et al.  Comparison of zotarolimus-eluting and sirolimus-eluting stents in patients with native coronary artery disease: a randomized controlled trial. , 2006, Journal of the American College of Cardiology.

[279]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[280]  A. Colombo,et al.  Biodegradable stents : "fulfilling the mission and stepping away". , 2000, Circulation.

[281]  Donald Garlotta,et al.  A Literature Review of Poly(Lactic Acid) , 2001 .

[282]  William Wijns,et al.  Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries: double-blind, randomised controlled trial (E-SIRIUS) , 2003, The Lancet.

[283]  R. Schwartz,et al.  Polymeric stents: modern alchemy or the future? , 1991, The Journal of invasive cardiology.

[284]  D. Williams,et al.  The in vivo and in vitro degradation of poly(glycolic acid) suture material as a function of applied strain. , 1984, Biomaterials.

[285]  M. Hartmann High Molecular Weight Polylactic Acid Polymers , 1998 .

[286]  Schwartz Rs,et al.  Neointima and arterial injury: dogs, rats, pigs, and more. , 1994 .

[287]  Raimund Erbel,et al.  Drug-eluting bioabsorbable magnesium stent. , 2004, Journal of interventional cardiology.

[288]  A. Küttner,et al.  Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. , 1997, Circulation.

[289]  Michel Vert,et al.  Aliphatic polyesters: great degradable polymers that cannot do everything. , 2005, Biomacromolecules.

[290]  C. K. Chong,et al.  Viscoelasticity of esophageal tissue and application of a QLV model. , 2006, Journal of biomechanical engineering.

[291]  P. Chadwick Continuum Mechanics: Concise Theory and Problems , 1976 .

[292]  Pertti Törmälä,et al.  Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents , 2003, Journal of biomaterials science. Polymer edition.

[293]  Giuseppe Saccomandi,et al.  Constitutive Modelling of Rubber-Like and Biological Materials with Limiting Chain Extensibility , 2002 .

[294]  Meital Zilberman,et al.  Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[295]  Bernard Chevalier,et al.  Comparison of in vivo acute stent recoil between the bioabsorbable everolimus‐eluting coronary stent and the everolimus‐eluting cobalt chromium coronary stent: Insights from the ABSORB and SPIRIT trials , 2007, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[296]  M. Epstein,et al.  Cardiovascular Solid Mechanics: Cells, Tissues, and Organs , 2002 .

[297]  W S Pietrzak,et al.  Bioabsorbable Fixation Devices: Status for the Craniomaxillofacial Surgeon , 1997, The Journal of craniofacial surgery.

[298]  C. Haudenschild,et al.  Influence of inflation pressure and balloon size on the development of intimal hyperplasia after balloon angioplasty. A study in the atherosclerotic rabbit. , 1989, Circulation.

[299]  H Yokoi,et al.  Three-year follow-up after implantation of metallic coronary-artery stents. , 1996, The New England journal of medicine.

[300]  Myung Ho Jeong,et al.  Preventive effects of the heparin‐coated stent on restenosis in the porcine model , 1999, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[301]  D. Williams,et al.  Mechanisms of polymer degradation in implantable devices. 2. Poly(DL-lactic acid). , 1993, Journal of biomedical materials research.

[302]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[303]  J C Middleton,et al.  Synthetic biodegradable polymers as orthopedic devices. , 2000, Biomaterials.

[304]  Kurt Ulm,et al.  Sirolimus-Eluting Stents vs Paclitaxel-Eluting Stents in Patients With Coronary Artery Disease: Meta-analysis of Randomized Trials , 2005 .

[305]  D. Williams,et al.  Mechanisms of polymer degradation in implantable devices. I. Poly(caprolactone). , 1993, Biomaterials.

[306]  Fracture of a sirolimus-eluting stent with migration. , 2008, International journal of cardiology.

[307]  M. Peuster,et al.  A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits , 2001, Heart.

[308]  K. Rajagopal,et al.  Stress softening, strain localization and permanent set in the circumferential shear of an incompressible elastomeric cylinder , 1997 .

[309]  A. Wineman Torsion of an Elastomeric Cylinder Undergoing Microstructural Changes , 2001 .

[310]  Antonio Colombo,et al.  Direct Stenting with TAXUS Stents Seems to be as Safe and Effective as with Predilatation , 2004, Herz.

[311]  U. Saravanan,et al.  Inflation, Extension, Torsion and Shearing of an Inhomogeneous Compressible Elastic Right Circular Annular Cylinder , 2005 .