Nonlinear orthotropic model of the inhomogeneous assembly compression of PEM fuel cell gas diffusion layers

Abstract PEM fuel cell assembly pressure is known to cause large strains in the gas diffusion layer (GDL), which results in significant changes in its mechanical, electrical and thermal properties. These changes affect the rates of mass, charge, and heat transport through the GDL, thus impacting fuel cell performance and lifetime. The appropriate modeling of the inhomogeneous GDL compression process associated with the repetitive channel-rib pattern is therefore essential for a detailed description of the physical–chemical processes that take place in the cell. In this context, the mechanical characterization of the GDL is of special relevance, since its microstructure based on carbon fibers has strongly nonlinear orthotropic properties. The present study describes a new finite element model which fully incorporates the nonlinear orthotropic characteristics of the GDL, thereby improving the prediction of the inhomogeneous compression effects in this key element of the cell. Among other conclusions, the numerical results show that the linear isotropic models widely reported in the literature tend to overestimate the porosity and the partial intrusion of the GDL in the channel region, and may lead to incorrect predictions in terms of interfacial contact pressure distributions.

[1]  Yue Zou,et al.  A time and hydration dependent viscoplastic model for polyelectrolyte membranes in fuel cells , 2008 .

[2]  P. Sui,et al.  A numerical investigation of the effects of compression force on PEM fuel cell performance , 2008 .

[3]  Xianguo Li,et al.  Review of bipolar plates in PEM fuel cells: Flow-field designs , 2005 .

[4]  Alexander Wokaun,et al.  Anisotropic, effective diffusivity of porous gas diffusion layer materials for PEFC , 2008 .

[5]  Jon G. Pharoah,et al.  On effective transport coefficients in PEM fuel cell electrodes: Anisotropy of the porous transport layers , 2006 .

[6]  R. Pitchumani,et al.  MEASUREMENT AND PREDICTION OF ELECTRICAL CONTACT RESISTANCE BETWEEN GAS DIFFUSION LAYERS AND BIPOLAR PLATE FOR APPLICATIONS TO PEM FUEL CELLS , 2004 .

[7]  Viral S. Mehta,et al.  Review and analysis of PEM fuel cell design and manufacturing , 2003 .

[8]  Suresh G. Advani,et al.  Experimental characterization of in-plane permeability of gas diffusion layers , 2006 .

[9]  Chang-Soo Kim,et al.  The influence of stack clamping pressure on the performance of PEM fuel cell stack , 2010 .

[10]  Xinyu Huang,et al.  Creep and stress-rupture of Nafion® membranes under controlled environment , 2010 .

[11]  A. Wokaun,et al.  Electrochemical diffusimetry of fuel cell gas diffusion layers , 2008 .

[12]  R. Flückiger Transport phenomena on the channel-rib scale of polymer electrolyte fuel cells , 2009 .

[13]  Yue Zou,et al.  On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles , 2007 .

[14]  Albert J. Shih,et al.  A micro-scale model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells , 2007 .

[15]  Jun Ni,et al.  A mechanical-electrical finite element method model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells , 2008 .

[16]  Mustafa Fazil Serincan,et al.  Mechanical behavior of the membrane during the polymer electrolyte fuel cell operation , 2011 .

[17]  Allen M. Hermann,et al.  Bipolar plates for PEM fuel cells: A review , 2005 .

[18]  Andrew Higier,et al.  Effect of gas diffusion layer compression on PEM fuel cell performance , 2006 .

[19]  Mary C. Boyce,et al.  Constitutive modeling of the rate, temperature, and hydration dependent deformation response of Nafion to monotonic and cyclic loading , 2010 .

[20]  F. Andrieux,et al.  Pseudo-elastic description of polymeric foams at finite deformation with stress softening and residual strain effects , 2011 .

[21]  F. Marone,et al.  Determination of Material Properties of Gas Diffusion Layers: Experiments and Simulations Using Phase Contrast Tomographic Microscopy , 2009 .

[22]  M. Fowler,et al.  In-plane and through-plane gas permeability of carbon fiber electrode backing layers , 2006 .

[23]  Prathap Haridoss,et al.  Effect of cyclic compression on structure and properties of a Gas Diffusion Layer used in PEM fuel cells , 2010 .

[24]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[25]  J. C. Cross,et al.  Effect of gas diffusion layer modulus and land–groove geometry on membrane stresses in proton exchange membrane fuel cells , 2011 .

[26]  Ying Liu,et al.  Estimation of contact resistance in proton exchange membrane fuel cells , 2006 .

[27]  Chengwei Wu,et al.  Numerical study on the compression effect of gas diffusion layer on PEMFC performance , 2007 .

[28]  T. Akiki,et al.  Influence of local porosity and local permeability on the performances of a polymer electrolyte membrane fuel cell , 2010 .

[29]  Satish G. Kandlikar,et al.  Uneven gas diffusion layer intrusion in gas channel arrays of proton exchange membrane fuel cell and its effects on flow distribution , 2009 .

[30]  Jun Ni,et al.  A Numerical Model for Predicting Gas Diffusion Layer Failure in Proton Exchange Membrane Fuel Cells , 2011 .

[31]  Chao-Yang Wang,et al.  Fundamental Models for Fuel Cell Engineering , 2004 .

[32]  I. Taymaz,et al.  Numerical study of assembly pressure effect on the performance of proton exchange membrane fuel cell , 2010 .

[33]  Yongqiang Li,et al.  A novel full-field experimental method to measure the local compressibility of gas diffusion media , 2010 .

[34]  J. W. Van Zee,et al.  The effects of compression and gas diffusion layers on the performance of a PEM fuel cell , 1999 .

[35]  N. Djilali,et al.  Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers , 2007 .

[36]  Chengwei Wu,et al.  Influence of clamping force on the performance of PEMFCs , 2007 .

[37]  Michio Hori,et al.  Study on metallic bipolar plate for proton exchange membrane fuel cell , 2006 .

[38]  S. V. Sotirchos,et al.  Ordinary and transition regime diffusion in random fiber structures , 1993 .

[39]  Zhong‐sheng Liu,et al.  Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: Beyond Bruggeman approximation , 2010 .

[40]  W. B. Johnson,et al.  Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle , 2006 .

[41]  J. Liang,et al.  Investigation of the effects of compression pressure on direct methanol fuel cell , 2011 .

[42]  Yen-Ju Su,et al.  Effect of gas diffusion layer compression on the performance in a proton exchange membrane fuel cell , 2008 .

[43]  P. Haridoss,et al.  Differences in structure and property of carbon paper and carbon cloth diffusion media and their impact on proton exchange membrane fuel cell flow field design , 2011 .

[44]  Ching-Han Huang,et al.  Analyses of the fuel cell stack assembly pressure , 2005 .

[45]  Xinyu Huang,et al.  A Multiphysics Model of PEM Fuel Cell Incorporating the Cell Compression Effects , 2010 .

[46]  D. A. Bograchev,et al.  Stress and plastic deformation of MEA in fuel cells: Stresses generated during cell assembly , 2008 .

[47]  林智汶 Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells - a Review , 2009 .

[48]  Michael H. Santare,et al.  Numerical Investigation of Mechanical Durability in Polymer Electrolyte Membrane Fuel Cells , 2010 .

[49]  Gary A. Baum,et al.  Determination of all nine orthotropic elastic constants for machine-made paper , 1979 .

[50]  F. R. Foulkes,et al.  Fuel Cell Handbook , 1989 .

[51]  Falin Chen,et al.  Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell , 2003 .

[52]  R. Roshandel,et al.  The effects of non-uniform distribution of catalyst loading on polymer electrolyte membrane fuel cell performance , 2007 .

[53]  Jenn-Jiang Hwang,et al.  Effect of clamping pressure on the performance of a PEM fuel cell , 2007 .

[54]  A. Morin,et al.  Characterization of PEMFCs gas diffusion layers properties , 2006 .

[55]  Olli Himanen,et al.  Inhomogeneous compression of PEMFC gas diffusion layer: Part II. Modeling the effect , 2007 .

[56]  N. Djilali,et al.  Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 2: Hysteresis effect under cyclic compressive load , 2010 .

[57]  U. Stimming,et al.  Analysis of the diffusive mass transport in the anode side porous backing layer of a direct methanol fuel cell , 2009 .

[58]  Tero Hottinen,et al.  Inhomogeneous compression of PEMFC gas diffusion layer: Part I. Experimental , 2007 .

[59]  Mary C. Boyce,et al.  Hygro-thermal mechanical behavior of Nafion during constrained swelling , 2011 .

[60]  Olli Himanen,et al.  Contact resistance between gas diffusion layer and catalyst layer of PEM fuel cell , 2008 .

[61]  W. B. Johnson,et al.  Mechanical behavior of fuel cell membranes under humidity cycles and effect of swelling anisotropy on the fatigue stresses , 2007 .

[62]  P. Sui,et al.  Analysis of coupled electron and mass transport in the gas diffusion layer of a PEM fuel cell , 2006 .

[63]  D. A. Bograchev,et al.  Stress and plastic deformation of MEA in running fuel cell , 2008 .

[64]  J. Kleemann,et al.  Characterisation of mechanical behaviour and coupled electrical properties of polymer electrolyte membrane fuel cell gas diffusion layers , 2009 .

[65]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[66]  Yibin Fu,et al.  Nonlinear elasticity : theory and applications , 2001 .

[67]  F. Delannay,et al.  Elastic anisotropy of a transversely isotropic random network of interconnected fibres: non-triangulated network model , 2004 .

[68]  Linfa Peng,et al.  Effect of dimensional error of metallic bipolar plate on the GDL pressure distribution in the PEM fuel cell , 2009 .

[69]  Y. Lai,et al.  Channel intrusion of gas diffusion media and the effect on fuel cell performance , 2008 .

[70]  L. Schadler,et al.  Stress relaxation of PBI based membrane electrode assemblies , 2008 .

[71]  Yongqiang Li Experimental Studies on the Mechanical Durability of Proton Exchange Membranes , 2008 .

[72]  K. Reifsnider,et al.  Durability of PEM Fuel Cell Membranes , 2009 .

[73]  Ramin Roshandel,et al.  The effects of porosity distribution variation on PEM fuel cell performance , 2005 .

[74]  Frano Barbir,et al.  PEM Fuel Cells: Theory and Practice , 2012 .

[75]  Mustafa Fazil Serincan,et al.  Effect of gas diffusion layer anisotropy on mechanical stresses in a polymer electrolyte membrane , 2011 .

[76]  Chengwei Wu,et al.  Contact resistance prediction and structure optimization of bipolar plates , 2006 .

[77]  Albert J. Shih,et al.  Assembly pressure and membrane swelling in PEM fuel cells , 2009 .

[78]  O. Himanen,et al.  Thermal Conductivity and Contact Resistance of Compressed Gas Diffusion Layer of PEM Fuel Cell , 2008 .

[79]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .