A Random Matrix Approach to Credit Risk

We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided.

[1]  R. Jarrow,et al.  A Markov Model for the Term Structure of Credit Risk Spreads , 1997 .

[2]  Dependence of defaults and recoveries in structural credit risk models , 2011, 1102.3150.

[3]  D. Shimko Credit risk : models and management , 1999 .

[4]  J. Bouchaud,et al.  Noise Dressing of Financial Correlation Matrices , 1998, cond-mat/9810255.

[5]  F. Black,et al.  VALUING CORPORATE SECURITIES: SOME EFFECTS OF BOND INDENTURE PROVISIONS , 1976 .

[6]  John C. Hull,et al.  Valuing Credit Default Swaps I , 2000 .

[7]  P. Glasserman Tail Approximations for Portfolio Credit Risk , 2004 .

[8]  Jerzy Jurkiewicz,et al.  Applying free random variables to random matrix analysis of financial data. Part I: The Gaussian case , 2006 .

[9]  R. Jarrow,et al.  Pricing Derivatives on Financial Securities Subject to Credit Risk , 1995 .

[10]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[11]  F. Olver Asymptotics and Special Functions , 1974 .

[12]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[13]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[14]  T. Bielecki,et al.  Credit Risk: Modeling, Valuation And Hedging , 2004 .

[15]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[16]  T. Guhr,et al.  Credit risk - A structural model with jumps and correlations , 2007, 0707.3478.

[17]  D. Duffie,et al.  Modeling term structures of defaultable bonds , 1999 .

[18]  R. C. Merton,et al.  On the Pricing of Corporate Debt: The Risk Structure of Interest Rates , 1974, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[19]  G. Biroli,et al.  The Student ensemble of correlation matrices: eigenvalue spectrum and Kullback-Leibler entropy , 2007, 0710.0802.

[20]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[21]  G. Watson Bessel Functions. (Scientific Books: A Treatise on the Theory of Bessel Functions) , 1923 .

[22]  B. Rosenow,et al.  Modelling Correlations in Credit Portfolio Risk , 2006 .

[23]  Lotfi Karoui,et al.  Modeling the Term Structure of Defaultable Bonds under Recovery Risk , 2005 .

[24]  V. Plerou,et al.  Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series , 1999, cond-mat/9902283.

[25]  Philipp J. Schönbucher,et al.  Factor Models: Portfolio Credit Risks When Defaults are Correlated , 2001 .

[26]  Jean-Philippe Bouchaud,et al.  Financial Applications of Random Matrix Theory: Old Laces and New Pieces , 2005 .

[27]  K. Giesecke Credit Risk Modeling and Valuation: An Introduction , 2004 .

[28]  P. Vivo,et al.  Superstatistical generalizations of Wishart–Laguerre ensembles of random matrices , 2008, 0811.1992.

[29]  Z. Burda,et al.  Spectral properties of empirical covariance matrices for data with power-law tails. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  P. J. Schonbucher Credit Derivatives Pricing Models , 2003 .

[31]  Rudi Schafer,et al.  Empirical Evidence for the Structural Recovery Model , 2012, 1203.3188.

[32]  Rudi Schafer,et al.  Calibration of structural and reduced-form recovery models , 2011, 1102.4864.

[33]  C. Bluhm,et al.  An Introduction to Credit Risk Modeling , 2002 .

[34]  Yuri A. Katz,et al.  Default risk modeling beyond the first-passage approximation: extended Black-Cox model. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  David Lando,et al.  Credit Risk Modeling: Theory and Applications , 2004 .

[36]  Georges Dionne,et al.  Credit Risk: Pricing, Measurement, and Management , 2005 .