Serotonin/dopamine interaction in memory formation.

Both serotonin (5-HT) and dopamine (DA) neurotransmitters play a key role in modulating synaptic transmission in the central nervous system. Such 5-HT- and DA-mediated modulatory activity has been shown to influence a wide variety of cerebral functions, both of an instrumental and cognitive nature. Some brain regions strongly involved in cognition such as the prefrontal cortex, hippocampal formation and corpus striatum, are densely innervated by serotonergic and dopaminergic afferents proceeding from the raphe complex and the mesocorticolimbic or nigrostriatal systems, respectively. Learning and memory are strongly modulated by 5-HT and DA neurotransmitter activity, and in some cases they interact interdependently to sustain the psychobiological organization of these cognitive processes. Learning and memory, at least in part, depend on short- or long-lasting synaptic modifications, mainly occurring at dendritic spines. Indeed, the modulatory influence of 5-HT and DA at the synaptic level may affect the codification of mnemonic information on such spines. In fact, several experimental models of neurotransmitter activity have identified a close association between a 5-HT-DA imbalance and cytoarchitectonic changes underlying learning and memory impairment.

[1]  A. Simon,et al.  Opposing effects of AMPA and 5-HT1A receptor blockade on passive avoidance and object recognition performance: Correlation with AMPA receptor subunit expression in rat hippocampus , 2006, Neuropharmacology.

[2]  José A. Arias-Montaño,et al.  Dopamina: síntesis, liberación y receptores en el Sistema Nervioso Central. , 2000, Revista Biomédica.

[3]  G. Aghajanian,et al.  Effects of ketanserin on neuronal responses to serotonin in the prefrontal cortex, lateral geniculate and dorsal raphe nucleus , 1985, Neuropharmacology.

[4]  L. Descarries,et al.  Dual character, asynaptic and synaptic, of the dopamine innervation in adult rat neostriatum: A quantitative autoradiographic and immunocytochemical analysis , 1996, The Journal of comparative neurology.

[5]  B. Meldrum Excitatory Amino Acid Transmitters in Epilepsy , 1991, Epilepsia.

[6]  R. Bruton,et al.  Ability of 5‐HT4 receptor ligands to modulate rat striatal dopamine release in vitro and in vivo , 1996, British journal of pharmacology.

[7]  P. De Deurwaerdère,et al.  Conditional involvement of striatal serotonin3 receptors in the control of in vivo dopamine outflow in the rat striatum , 2003, The European journal of neuroscience.

[8]  A. Grace,et al.  Dopamine modulation of hippocampal-prefrontal cortical interaction drives memory-guided behavior. , 2008, Cerebral cortex.

[9]  S. R. Nash,et al.  Dopamine receptors: from structure to function. , 1998, Physiological reviews.

[10]  L. Dawson,et al.  The 5-HT6 Receptor Antagonist SB-271046 Selectively Enhances Excitatory Neurotransmission in the Rat Frontal Cortex and Hippocampus , 2001, Neuropsychopharmacology.

[11]  K M Harris,et al.  Three-Dimensional Organization of Smooth Endoplasmic Reticulum in Hippocampal CA1 Dendrites and Dendritic Spines of the Immature and Mature Rat , 1997, The Journal of Neuroscience.

[12]  K. Harris,et al.  Ultrastructure, development, and plasticity of dendritic spine synapses in area CA1 of the rat hippocampus: extending our vision with serial electron microscopy and three-dimensional analyses , 1989 .

[13]  K. Mishima,et al.  Investigation of mechanisms mediating 8-OH-DPAT-induced impairment of spatial memory: Involvement of 5-HT1A receptors in the dorsal hippocampus in rats , 2006, Brain Research.

[14]  I. González-Burgos,et al.  Golgi method without osmium tetroxide for the study of the central nervous system. , 1992, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[15]  P. Goldman-Rakic,et al.  Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390 , 1991, Neuroscience.

[16]  K. Berridge,et al.  Cortex, striatum and cerebellum: control of serial order in a grooming sequence , 2004, Experimental Brain Research.

[17]  P. De Deurwaerdère,et al.  Role of Serotonin2A and Serotonin2B/2C Receptor Subtypes in the Control of Accumbal and Striatal Dopamine Release Elicited In Vivo by Dorsal Raphe Nucleus Electrical Stimulation , 1999, Journal of neurochemistry.

[18]  A. Deutch,et al.  Serotonin 5‐HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex , 1997, Synapse.

[19]  B. Moghaddam,et al.  Rule Learning and Reward Contingency Are Associated with Dissociable Patterns of Dopamine Activation in the Rat Prefrontal Cortex, Nucleus Accumbens, and Dorsal Striatum , 2006, The Journal of Neuroscience.

[20]  Danielle A. Simmons,et al.  Evidence That Long-Term Potentiation Occurs within Individual Hippocampal Synapses during Learning , 2007, The Journal of Neuroscience.

[21]  R Lujan,et al.  Perisynaptic Location of Metabotropic Glutamate Receptors mGluR1 and mGluR5 on Dendrites and Dendritic Spines in the Rat Hippocampus , 1996, The European journal of neuroscience.

[22]  D. Kupfer,et al.  Serotonin in Aging, Late-Life Depression, and Alzheimer's Disease: The Emerging Role of Functional Imaging , 1998, Neuropsychopharmacology.

[23]  R. Prado-Alcalá,et al.  Regional infusions of serotonin into the striatum and memory consolidation , 2003, Synapse.

[24]  C. G. Fonollosa Explorando el cerebro , 1996 .

[25]  D. M. Jackson,et al.  Dopamine receptors: molecular biology, biochemistry and behavioural aspects. , 1994, Pharmacology & therapeutics.

[26]  Walter H. Backes,et al.  Acute tryptophan depletion reduces activation in the right hippocampus during encoding in an episodic memory task , 2006, NeuroImage.

[27]  A. Meneses,et al.  5-HT system and cognition , 1999, Neuroscience & Biobehavioral Reviews.

[28]  J. Cano,et al.  Influence of serotoninergic drugs on in vivo dopamine extracellular output in rat striatum , 1998, Journal of neuroscience research.

[29]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[30]  F. Artigas,et al.  Control serotoninérgico de la corteza prefrontal , 2004 .

[31]  P. Goldman-Rakic,et al.  The Physiological Role of 5-HT2A Receptors in Working Memory , 2002, The Journal of Neuroscience.

[32]  L Tarelo-Acuña,et al.  Prenatal and postnatal exposure to ethanol induces changes in the shape of the dendritic spines from hippocampal CA1 pyramidal neurons of the rat , 2000, Neuroscience Letters.

[33]  S. Sesack,et al.  Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex , 2003, Neuroscience.

[34]  T. Nabeshima,et al.  Brain serotonin depletion impairs short-term memory, but not long-term memory in rats , 2007, Physiology & Behavior.

[35]  R. Hawkins,et al.  Morphological changes associated with long-term potentiation. , 1998, Histology and histopathology.

[36]  P. Goldman-Rakic,et al.  Modulation of memory fields by dopamine Dl receptors in prefrontal cortex , 1995, Nature.

[37]  E. Zifa,et al.  5-Hydroxytryptamine receptors. , 1992, Pharmacological reviews.

[38]  I. González-Burgos,et al.  Place Learning Impairment in Chronically Tryptophan-Restricted Rats. , 1998, Nutritional neuroscience.

[39]  Yutaka Kirino,et al.  Depletion of serotonin selectively impairs short-term memory without affecting long-term memory in odor learning in the terrestrial slug Limax valentianus. , 2006, Learning & memory.

[40]  K. Harris,et al.  Dendrites are more spiny on mature hippocampal neurons when synapses are inactivated , 1999, Nature Neuroscience.

[41]  Bernardo L. Sabatini,et al.  Analysis of calcium channels in single spines using optical fluctuation analysis , 2000, Nature.

[42]  U. Spampinato,et al.  Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: a microdialysis study in the halothane-anesthetized rat , 1995, Neuropharmacology.

[43]  W J Riedel,et al.  Tryptophan depletion impairs memory consolidation but improves focussed attention in healthy young volunteers , 2000, Journal of psychopharmacology.

[44]  F. Bloom,et al.  The type 3 serotonin receptor is expressed in a subpopulation of GABAergic neurons in the rat neocortex and hippocampus , 1996, Brain Research.

[45]  R. Yuste,et al.  Mechanisms of Calcium Decay Kinetics in Hippocampal Spines: Role of Spine Calcium Pumps and Calcium Diffusion through the Spine Neck in Biochemical Compartmentalization , 2000, The Journal of Neuroscience.

[46]  H. E. Rosvold,et al.  Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. , 1979, Science.

[47]  B. Jacobs,et al.  Structure and function of the brain serotonin system. , 1992, Physiological reviews.

[48]  M. Wilson,et al.  The organization of serotonergic projections to cerebral cortex in primates: Retrograde transport studies , 1991, Neuroscience.

[49]  Received December Apical Dendritic Spines of the Visual Cortex and Light Deprivation in the Mouse , 1967 .

[50]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  L. Descarries,et al.  Serotonin innervation in adult rat neostriatum. II. Ultrastructural features: a radioautographic and immunocytochemical study , 1989, Brain Research.

[52]  P. Goldman-Rakic,et al.  Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide (SEDS) immunolabeling technique. , 1993, Cerebral cortex.

[53]  G. Mengod,et al.  Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. , 2004, Cerebral cortex.

[54]  Onur Güntürkün,et al.  Differential increase of extracellular dopamine and serotonin in the ‘prefrontal cortex’ and striatum of pigeons during working memory , 2007, The European journal of neuroscience.

[55]  R. Ridley,et al.  The 5-HT1A antagonist, WAY 100 635, alleviates cognitive impairments induced by dizocilpine (MK-801) in monkeys , 2000, Neuropharmacology.

[56]  E. Fernández-Espejo Cómo funciona el nucleus accumbens , 2000 .

[57]  Michael Leifheit,et al.  Hippocampal serotonergic damage induced by MDMA (ecstasy): effects on spatial learning , 2003, Physiology & Behavior.

[58]  S. Pandey,et al.  Cellular localization of serotonin(2A) (5HT(2A)) receptors in the rat brain. , 2000, Brain research bulletin.

[59]  M. Paradiso,et al.  Neurociencia: explorando el cerebro , 1998 .

[60]  J. Seamans,et al.  Dopamine and Serotonin Interactions in the Prefrontal Cortex: Insights on Antipsychotic Drugs and Their Mechanism of Action , 2007, Pharmacopsychiatry.

[61]  Bradley R. Postle,et al.  Short Term and Working Memory , 2009 .

[62]  B. Costall,et al.  Neuropharmacology of 5-HT3 Receptor Ligands , 2000 .

[63]  N. Lemon,et al.  Dopamine D1/D5 Receptors Gate the Acquisition of Novel Information through Hippocampal Long-Term Potentiation and Long-Term Depression , 2006, The Journal of Neuroscience.

[64]  M. Pompeiano,et al.  Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. , 1994, Brain research. Molecular brain research.

[65]  F. Zhou,et al.  Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex. , 1999, Journal of neurophysiology.

[66]  Jordi Serrats,et al.  Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. , 2004, Cerebral cortex.

[67]  A. Meneses,et al.  5-HT1A receptors and memory , 2007, Neuroscience & Biobehavioral Reviews.

[68]  Paul J. Harrison,et al.  The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain , 1995, Brain Research.

[69]  Karen L. Smith,et al.  Spine Loss and Other Persistent Alterations of Hippocampal Pyramidal Cell Dendrites in a Model of Early-Onset Epilepsy , 1998, The Journal of Neuroscience.

[70]  T. Robbins Chemistry of the mind: Neurochemical modulation of prefrontal cortical function , 2005, The Journal of comparative neurology.

[71]  S. Sesack,et al.  Hippocampal afferents to the rat prefrontal cortex: Synaptic targets and relation to dopamine terminals , 1996, The Journal of comparative neurology.

[72]  Paul J. Harrison,et al.  The distribution of 5-HT6 receptors in rat brain: an autoradiographic binding study using the radiolabelled 5-HT6 receptor antagonist [125I]SB-258585 , 2002, Brain Research.

[73]  A. Phillips Mesocorticolimbic dopamine: a neurochemical link between motivation and memory , 2003 .

[74]  Molodtsova Gf Different roles of dopamine and serotonin in conditioned passive avoidance response of rats , 2006 .

[75]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[76]  M. Martres,et al.  Quantitative RT‐PCR distribution of serotonin 5‐HT6 receptor mRNA in the central nervous system of control or 5,7‐dihydroxytryptamine‐treated rats , 1996, Synapse.

[77]  R. Prado-Alcalá,et al.  Blockade of striatal 5-HT2 receptors produces retrograde amnesia in rats. , 2003, Life sciences.

[78]  M. Bennett,et al.  The concept of long term potentiation of transmission at synapses , 2000, Progress in Neurobiology.

[79]  J. Seamans,et al.  D1 Receptor Modulation of Hippocampal–Prefrontal Cortical Circuits Integrating Spatial Memory with Executive Functions in the Rat , 1998, The Journal of Neuroscience.

[80]  P. De Deurwaerdère,et al.  Serotonin Enhances Striatal Dopamine Outflow In Vivo Through Dopamine Uptake Sites , 1996, Journal of neurochemistry.

[81]  E. Azmitia,et al.  Changing Views of Cajal's Neuron , 2002 .

[82]  V. Chan‐Palay,et al.  The Hippocampus : new vistas , 1989 .

[83]  J. Juraska,et al.  Spatial and nonspatial learning across the rat estrous cycle. , 1997, Behavioral neuroscience.

[84]  P. Goldman-Rakic,et al.  The anatomy of dopamine in monkey and human prefrontal cortex. , 1992, Journal of neural transmission. Supplementum.

[85]  A. Meneses Physiological, Pathophysiological and Therapeutic Roles of 5-HT Systems in Learning and Memory , 1998, Reviews in the neurosciences.

[86]  Kea-Joo Lee,et al.  The roles of dendritic spine shapes in Purkinje cells , 2008, The Cerebellum.

[87]  A. Meneses Do serotonin1–7 receptors modulate short and long-term memory? , 2007, Neurobiology of Learning and Memory.

[88]  I. González-Burgos,et al.  Modification of dendritic development. , 2002, Progress in brain research.

[89]  P. Molinoff,et al.  Basic Neurochemistry: Molecular, Cellular and Medical Aspects , 1989 .

[90]  M. Cervantes,et al.  Spine-type densities of hippocampal CA1 neurons vary in proestrus and estrus rats , 2005, Neuroscience Letters.

[91]  Carmen Pedraza,et al.  Implicación de la dopamina en los procesos cognitivos del aprendizaje y la memoria , 2005 .

[92]  J. Palacios,et al.  Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors , 1985, Brain Research.

[93]  Guillaume Lucas,et al.  Endogenous serotonin enhances the release of dopamine in the striatum only when nigro-striatal dopaminergic transmission is activated , 2000, Neuropharmacology.

[94]  I. González-Burgos,et al.  Effect of Tryptophan Restriction on Short-Term Memory , 1998, Physiology & Behavior.

[95]  G. Moralí,et al.  Long-term study of dendritic spines from hippocampal CA1 pyramidal cells, after neuroprotective melatonin treatment following global cerebral ischemia in rats , 2007, Neuroscience Letters.

[96]  E. Levin,et al.  Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats , 1999, Neuroscience.

[97]  G. Lynch,et al.  Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5 , 1986, Nature.

[98]  P. Kelly,et al.  Autoradiographic localization of dopamine D1 and D2 receptors in the brain of several mammalian species , 2005, Journal of Neural Transmission / General Section JNT.

[99]  T. H. Brown,et al.  Dendritic spines: convergence of theory and experiment. , 1992, Science.

[100]  J. Cassel,et al.  Serotonergic modulation of cholinergic function in the central nervous system: Cognitive implications , 1995, Neuroscience.

[101]  T. Deerinck,et al.  Identification and localization of ryanodine binding proteins in the avian central nervous system , 1990, Neuron.

[102]  Erol Başar,et al.  Memory and Brain Dynamics: Oscillations Integrating Attention, Perception, Learning, and Memory , 2004 .

[103]  I. González-Burgos,et al.  Chronic tryptophan restriction disrupts grooming chain completion in the rat , 1996, Physiology & Behavior.

[104]  J. A. Peters,et al.  Recent advances in the electrophysiological characterization of 5-HT3 receptors. , 1992, Trends in pharmacological sciences.

[105]  I. González-Burgos,et al.  Prefrontocortical serotonin depletion results in plastic changes of prefrontocortical pyramidal neurons, underlying a greater efficiency of short-term memory , 2000, Brain Research Bulletin.

[106]  S. B. Kater,et al.  Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. , 1994, Annual review of neuroscience.

[107]  A. Baba,et al.  Postsynaptic 5‐hydroxytryptamine1A receptor activation increases in vivo dopamine release in rat prefrontal cortex , 2000, British journal of pharmacology.

[108]  Monica Luciana,et al.  Dopaminergic Modulation of Working Memory for Spatial but Not Object Cues in Normal Humans , 1997, Journal of Cognitive Neuroscience.

[109]  R. Baldessarini,et al.  Motor effects of serotonin in the central nervous system. , 1980, Life sciences.

[110]  J. Bourne,et al.  Do thin spines learn to be mushroom spines that remember? , 2007, Current Opinion in Neurobiology.

[111]  Richard G M Morris,et al.  Dopaminergic modulation of the persistence of one-trial hippocampus-dependent memory. , 2006, Learning & memory.

[112]  Paul J. Harrison,et al.  The distribution of 5-HT(6) receptors in rat brain: an autoradiographic binding study using the radiolabelled 5-HT(6) receptor antagonist [(125)I]SB-258585. , 2002, Brain research.

[113]  JaneR . Taylor,et al.  Supranormal Stimulation of D1 Dopamine Receptors in the Rodent Prefrontal Cortex Impairs Spatial Working Memory Performance , 1997, The Journal of Neuroscience.

[114]  I. González-Burgos,et al.  Serotonin involvement in the spontaneous alternation ability: a behavioral study in tryptophan-restricted rats , 1995, Neuroscience Letters.

[115]  R. Jaffard,et al.  The Serotonin1A Receptor Partial Agonist S15535 [4-(Benzodioxan-5-yl)1-(indan-2-yl)piperazine] Enhances Cholinergic Transmission and Cognitive Function in Rodents: A Combined Neurochemical and Behavioral Analysis , 2004, Journal of Pharmacology and Experimental Therapeutics.

[116]  C. Bell,et al.  Tryptophan depletion and its implications for psychiatry , 2001, British Journal of Psychiatry.

[117]  S. Ögren,et al.  Selective 5-HT1A Antagonists WAY 100635 and NAD-299 Attenuate the Impairment of Passive Avoidance Caused by Scopolamine in the Rat , 2003, Neuropsychopharmacology.

[118]  U. Staubli,et al.  Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[119]  L. Squire Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. , 1992, Psychological review.

[120]  W. Riedel,et al.  Effects of 5-HT on Memory and the Hippocampus: Model and Data , 2006, Neuropsychopharmacology.

[121]  G. Yadid,et al.  Endogenous serotonin stimulates striatal dopamine release in conscious rats. , 1994, The Journal of pharmacology and experimental therapeutics.

[122]  P. Goldman-Rakic,et al.  D1 dopamine receptors in prefrontal cortex: involvement in working memory , 1991, Science.

[123]  T. Robbins,et al.  Cognitive Inflexibility After Prefrontal Serotonin Depletion , 2004, Science.

[124]  F. Yasuno [Hippocampal serotonin 1A receptor and memory function]. , 2004, Seishin shinkeigaku zasshi = Psychiatria et neurologia Japonica.

[125]  Marc G Caron,et al.  Dopamine receptors and brain function , 1996, Neuropharmacology.

[126]  H. Baumgarten,et al.  Serotoninergic Neurons and 5-HT Receptors in the CNS , 2000, Handbook of Experimental Pharmacology.

[127]  A. Lajtha,et al.  Food Reward-Induced Neurotransmitter Changes in Cognitive Brain Regions , 2007, Neurochemical Research.

[128]  I. González-Burgos,et al.  Chapter 11 Modification of dendritic development , 2002 .

[129]  P. Celada,et al.  Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. , 2004, Cerebral cortex.

[130]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[131]  C. Bradberry,et al.  Serotonin-mediated increase in prefrontal cortex dopamine release: pharmacological characterization. , 1996, The Journal of pharmacology and experimental therapeutics.

[132]  F. Craik,et al.  The Oxford handbook of memory , 2006 .

[133]  E. Wong,et al.  Central 5-HT4 receptors. , 1995, Trends in pharmacological sciences.

[134]  P. Goldman-Rakic,et al.  Serotonergic axons in monkey prefrontal cerebral cortex synapse predominantly on interneurons as demonstrated by serial section electron microscopy , 1996, The Journal of comparative neurology.

[135]  N. Newberry,et al.  Actions of 5-HT on human neocortical neurones in vitro , 1999, Brain Research.

[136]  CR Yang,et al.  Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[137]  J. Jentsch,et al.  Dopamine D2/D3 Receptors Play a Specific Role in the Reversal of a Learned Visual Discrimination in Monkeys , 2007, Neuropsychopharmacology.

[138]  L. Descarries,et al.  Quantified distribution of the serotonin innervation in adult rat hippocampus , 1990, Neuroscience.

[139]  Eduardo D. Martín,et al.  D1 but not D5 dopamine receptors are critical for LTP, spatial learning, and LTP-Induced arc and zif268 expression in the hippocampus. , 2008, Cerebral cortex.

[140]  Martin O’Neill,et al.  The effect of striatal dopamine depletion and the adenosine A2A antagonist KW-6002 on reversal learning in rats , 2007, Neurobiology of Learning and Memory.

[141]  Joseph E LeDoux,et al.  Structural plasticity and memory , 2004, Nature Reviews Neuroscience.

[142]  A. Scheibel,et al.  Loss of Dendrite Spines as an Index of Pre-Synaptic Terminal Patterns , 1966, Nature.

[143]  J. Neumaier,et al.  Increased Expression of 5-HT6 Receptors in the Rat Dorsomedial Striatum Impairs Instrumental Learning , 2007, Neuropsychopharmacology.

[144]  G. Collingridge,et al.  The regulation of hippocampal LTP by the molecular switch, a form of metaplasticity, requires mGlu5 receptors , 2005, Neuropharmacology.

[145]  J. Lisman,et al.  The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory , 2005, Neuron.

[146]  F. Edwards,et al.  Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation. , 1995, Physiological reviews.

[147]  Tracey J. Shors,et al.  Associative Memory Formation Increases the Observation of Dendritic Spines in the Hippocampus , 2003, The Journal of Neuroscience.

[148]  S. Pandey,et al.  Cellular localization of serotonin2A (5HT2A) receptors in the rat brain , 2000, Brain Research Bulletin.

[149]  H. Kasai,et al.  Structure–stability–function relationships of dendritic spines , 2003, Trends in Neurosciences.

[150]  A. Meneses Do serotonin(1-7) receptors modulate short and long-term memory? , 2007, Neurobiology of learning and memory.

[151]  P. Goldman-Rakic,et al.  Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[152]  M Segal,et al.  Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. , 1999, Journal of neurophysiology.

[153]  W. Riedel,et al.  Tryptophan modulation and cognition. , 2003, Advances in experimental medicine and biology.

[154]  S. Sesack,et al.  Prefrontal cortical projections to the rat dorsal raphe nucleus: Ultrastructural features and associations with serotonin and γ‐aminobutyric acid neurons , 2004, The Journal of comparative neurology.

[155]  D. Surmeier,et al.  Dopamine and working memory mechanisms in prefrontal cortex , 2007, The Journal of physiology.

[156]  C. B. Zárate,et al.  Cerebral cholinergic neurotransmission in protein and tryptophan-restricted adult rats. , 2003 .

[157]  Trevor Sharp,et al.  A review of central 5-HT receptors and their function , 1999, Neuropharmacology.

[158]  R. Andrade,et al.  Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex , 2007, Proceedings of the National Academy of Sciences.

[159]  J. Sweatt,et al.  Mechanisms of memory. , 2003, Journal of geriatric psychiatry and neurology.

[160]  Colin Davidson,et al.  Control of dorsal raphé 5-HT function by multiple 5-HT1 autoreceptors: parallel purposes or pointless plurality? , 2000, Trends in Neurosciences.

[161]  L. Krimer,et al.  Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons. , 2006, Cerebral cortex.

[162]  P Andersen,et al.  An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[163]  J. Palacios,et al.  Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors , 1985, Brain Research.

[164]  E. Richfield,et al.  Comparative distributions of dopamine D‐1 and D‐2 receptors in the cerebral cortex of rats, cats, and monkeys , 1989, The Journal of comparative neurology.

[165]  C. Yokoyama,et al.  Relationship between limbic and cortical 5-HT neurotransmission and acquisition and reversal learning in a go/no-go task in rats , 2006, Psychopharmacology.

[166]  M. E. Olvera-Cortés,et al.  Striatal serotonin depletion facilitates rat egocentric learning via dopamine modulation. , 2007, European journal of pharmacology.

[167]  M. E. Olvera-Cortés,et al.  Long‐term morphological and functional evaluation of the neuroprotective effects of post‐ischemic treatment with melatonin in rats , 2007, Journal of pineal research.

[168]  B. Jacobs,et al.  Dopaminergic input is required for increases in serotonin output produced by behavioral activation: an in vivo microdialysis study in rat forebrain , 1999, Neuroscience.

[169]  D. Rhoads,et al.  5-HT1A receptor activity disrupts spontaneous alternation behavior in rats , 2003, Pharmacology Biochemistry and Behavior.

[170]  L. Descarries,et al.  Somatodendritic localization of 5‐HT1A and preterminal axonal localization of 5‐HT1B serotonin receptors in adult rat brain , 2000, The Journal of comparative neurology.

[171]  N. Toni,et al.  Spine changes associated with long‐term potentiation , 2000, Hippocampus.