Tutte polynomials of bracelets

[1]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[2]  Christian Tanguy,et al.  What is the probability of connecting two points? , 2006, ArXiv.

[3]  R. Shrock,et al.  Transfer matrices for the partition function of the Potts model on lattice strips with toroidal and Klein-bottle boundary conditions , 2006 .

[4]  J. Richard,et al.  Character decomposition of Potts model partition functions. II. Toroidal geometry , 2006, math-ph/0605015.

[5]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[6]  A. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, BCC.

[7]  R. Shrock,et al.  Transfer matrices for the partition function of the Potts model on cyclic and Möbius lattice strips , 2004, cond-mat/0404524.

[8]  B. S Webb,et al.  Surveys in combinatorics 2005 , 2005 .

[9]  Norman Biggs,et al.  Specht modules and chromatic polynomials , 2004, J. Comb. Theory, Ser. B.

[10]  A. Sokal,et al.  The Brown-Colbourn conjecture on zeros of reliability polynomials is false , 2003, J. Comb. Theory B.

[11]  Norman Biggs,et al.  Chromatic polynomials and representations of the symmetric group , 2002 .

[12]  R. Shrock,et al.  Structural properties of Potts model partition functions and chromatic polynomials for lattice strips , 2000, cond-mat/0005232.

[13]  R. Shrock,et al.  Exact Potts Model Partition Functions for Strips of the Honeycomb Lattice , 2007, cond-mat/0703014.

[14]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[15]  Tom Brylawski,et al.  Matroid Applications: The Tutte Polynomial and Its Applications , 1992 .

[16]  T. Inui,et al.  The Symmetric Group , 1990 .

[17]  Norman L. Biggs,et al.  Interaction Models: Contents , 1977 .

[18]  R. M. Damerell,et al.  Recursive families of graphs , 1972 .

[19]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[20]  D. A. Sands Dichromatic polynomials of linear graphs , 1972 .

[21]  Elliott H Lieb,et al.  Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  H. Kramers,et al.  Statistics of the Two-Dimensional Ferromagnet. Part II , 1941 .