Reconsidering the glacier to rock glacier transformation problem: New insights from the central Andes of Chile

Abstract The glacier to rock glacier transformation problem is revisited from a previously unseen angle. A striking case in the Juncal Massif (located in the upper Aconcagua Valley, Chilean central Andes) is documented. There, the Presenteseracae debris-covered glacier has advanced several tens of metres and has developed a rock glacier morphology in its lower part over the last 60 years. The conditions for a theoretically valid glacier to rock glacier transformation are discussed and tested. Permafrost probability in the area of the studied feature is highlighted by regional-scale spatial modelling together with on-site shallow ground temperature records. Two different methods are used to estimate the mean surface temperature during the summer of 2014, and the sub-debris ice ablation rates are calculated as ranging between 0.05 and 0.19 cm d− 1, i.e., 0.04 and 0.17 m over the summer. These low ablation rates are consistent with the development of a coherent surface morphology over the last 60 years. Furthermore, the rates of rock wall retreat required for covering the former glacier at Presenteseracae lie within the common 0.1–2 mm y− 1 range, assuming an average debris thickness and a range of debris-covering time intervals. The integration of the geomorphological observations with the numerical results confirms that the studied debris-covered glacier is evolving into a rock glacier.

[1]  Alexander Brenning,et al.  Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27°–33°S) , 2010 .

[2]  A. Gillespie,et al.  Debris-Covered Glaciers in the Sierra Nevada, California, and Their Implications for Snowline Reconstructions , 1994, Quaternary Research.

[3]  A. Gillespie,et al.  Genetic variability of rock glaciers , 1998 .

[4]  Y. Fujii,et al.  Dynamics and GPR stratigraphy of a polar rock glacier on James Ross Island, Antarctic Peninsula , 2008, Journal of Glaciology.

[5]  T. Kusuda,et al.  EARTH TEMPERATURE AND THERMAL DIFFUSIVITY AT SELECTED STATIONS IN THE UNITED STATES , 1965 .

[6]  M. Phillips,et al.  Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses , 2009 .

[7]  K. Krainer,et al.  Reichenkar rock glacier: a glacier derived debris-ice system in the western Stubai Alps, Austria , 2000 .

[8]  James McPhee,et al.  An evaluation of approaches for modelling hydrological processes in high‐elevation, glacierized Andean watersheds , 2014 .

[9]  C. Kinnard,et al.  Geomorphology, internal structure, and successive development of a glacier foreland in the semiarid Chilean Andes (Cerro Tapado, upper Elqui Valley, 30°08′ S., 69°55′ W.) , 2014 .

[10]  O. Humlum Rock Glacier Appearance Level and Rock Glacier Initiation Line Altitude: A Methodological Approach to the Study of Rock Glaciers , 1988 .

[11]  W. Haeberli Investigating glacier-permafrost relationships in high-mountain areas: historical background, selected examples and research needs , 2005, Geological Society, London, Special Publications.

[12]  J. P. Milana,et al.  Diferencias mecánicas e hídricas del permafrost en glaciares de rocas glacigénicos y criogénicos, obtenidas de datos sísmicos en El Tapado, Chile , 2008 .

[13]  J. Janke,et al.  Modeling past and future alpine permafrost distribution in the Colorado Front Range , 2005 .

[14]  David R. Montgomery,et al.  Climate, tectonics, and the morphology of the Andes , 2001 .

[15]  Noel L. Potter,et al.  Ice-Cored Rock Glacier, Galena Creek, Northern Absaroka Mountains, Wyoming , 1972 .

[16]  H. E. Martin,et al.  Rock glaciers : II models and mechanisms , 1992 .

[17]  W. Cooley,et al.  Multivariate Data Analysis. , 1973 .

[18]  Rijan Bhakta Kayastha,et al.  Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor , 2000 .

[19]  B. Brock,et al.  An energy-balance model for debris-covered glaciers including heat conduction through the debris layer , 2010, Journal of Glaciology.

[20]  L. Nicholson,et al.  Properties of natural supraglacial debris in relation to modelling sub‐debris ice ablation , 2013 .

[21]  L. Nicholson,et al.  Calculating ice melt beneath a debris layer using meteorological data , 2006, Journal of Glaciology.

[22]  A. Brenning,et al.  Statistical analysis of topographic and climatic controls and multispectral signatures of rock glaciers in the dry Andes, Chile (27°–33°S) , 2010 .

[23]  Alexander Brenning,et al.  Logistic regression modeling of rock glacier and glacier distribution: Topographic and climatic controls in the semi-arid Andes , 2006 .

[24]  H. E. Martin,et al.  An Assessment of Rock Glacier Sliding Using Seventeen Years of Velocity Data: Nautardalur Rock Glacier, North Iceland , 1995 .

[25]  K. Kjær,et al.  Quantification of dead‐ice melting in ice‐cored moraines at the high‐Arctic glacier Holmströmbreen, Svalbard , 2007 .

[26]  H. Diaz,et al.  Threats to Water Supplies in the Tropical Andes , 2006, Science.

[27]  Tobias Bolch,et al.  Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards , 2012 .

[28]  A. Brenning,et al.  Status and evolution of the cryosphere in the Andes of Santiago (Chile, 33.5°S.) , 2010 .

[29]  O. Humlum The geomorphic significance of rock glaciers: estimates of rock glacier debris volumes and headwall recession rates in West Greenland , 2000 .

[30]  L. Espizua,et al.  The Little Ice Age glacier advance in the Central Andes (35°S), Argentina. , 2009 .

[31]  Javier Chueca A statistical analysis of the spatial distribution of rock glaciers, Spanish Central Pyrenees , 1992 .

[32]  M. Hoelzle,et al.  A two-sided approach to estimate heat transfer processes within the active layer of the Murtèl–Corvatsch rock glacier , 2014 .

[33]  D. Collett Modelling Binary Data , 1991 .

[34]  J. Degenhardt,et al.  Development of tongue-shaped and multilobate rock glaciers in alpine environments – Interpretations from ground penetrating radar surveys , 2009 .

[35]  M. Hoelzle,et al.  The thermal regime of the active layer at the Murtèl rock glacier based on data from 2002 , 2004 .

[36]  L. A. Rasmussen,et al.  Glossary of glacier mass balance and related terms , 2010 .

[37]  Ole Humlum,et al.  Origin of rock glaciers: Observations from Mellemfjord, Disko Island, Central West Greenland , 1996 .

[38]  W. B. Whalley,et al.  A glacial interpretation for the origin and formation of the Marinet Rock Glacier , 1998 .

[39]  M. Nakawo,et al.  Field Experiments to Determine the Effect of a Debris Layer on Ablation of Glacier Ice , 1981, Annals of Glaciology.

[40]  Andreas Kääb,et al.  Permafrost creep and rock glacier dynamics , 2006 .

[41]  Michael P. Bishop,et al.  Debris‐covered glaciers and rock glaciers in the nanga parbat himalaya, pakistan , 2000 .

[42]  Simon Gascoin,et al.  Glacier meltwater flow paths and storage in a geomorphologically complex glacial foreland: The case of the Tapado glacier, dry Andes of Chile (30°S) , 2013 .

[43]  Jürgen Böhner,et al.  Land-Surface Parameters Specific to Topo-Climatology , 2009 .

[44]  Claude R. Duguay,et al.  Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain , 2011 .

[45]  Andreas Kääb,et al.  Advance mechanisms of rock glaciers , 2005 .

[46]  B. Etzelmüller,et al.  Holocene rockwall retreat and the estimation of rock glacier age, prins karls forland, svalbard , 2007 .

[47]  Roberto Quiroz,et al.  Atmospheric transmissivity: distribution and empirical estimation around the central Andes , 2004 .

[48]  D. Clark,et al.  Galena Creek rock glacier revisited—new observations on an old controversy , 1998 .

[49]  Stephan Gruber,et al.  Mountain permafrost: development and challenges of a young research field , 2010, Journal of Glaciology.

[50]  Andrés Rivera,et al.  Recent glacier variations at the Aconcagua basin, central Chilean Andes , 2008, Annals of Glaciology.

[51]  D. Barsch Permafrost creep and rockglaciers , 1992 .

[52]  F. Pellicciotti,et al.  Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: On the use of knowledge from glaciometeorological processes to constrain model parameters , 2012 .

[53]  A simple model to estimate ice ablation under a thick debris layer , 2006 .

[54]  Bernd Etzelmüller,et al.  Recent advances in permafrost modelling , 2008 .

[55]  Alexander Brenning,et al.  Sampling and statistical analyses of BTS measurements , 2005 .

[56]  R. Delaloye Contribution à l'étude du pergélisol de montagne en zone marginale , 2004 .

[57]  Yong Zhang,et al.  Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery , 2011, Journal of Glaciology.

[58]  W. Haeberli Modern Research Perspectives Relating to Permafrost Creep and Rock Glaciers: A Discussion , 2000 .

[59]  P. Johnson GLACIER-ROCK GLACIER TRANSITION IN THE SOUTHWEST YUKON TERRITORY, CANADA , 1980 .

[60]  I. Berthling Beyond confusion: Rock glaciers as cryo-conditioned landforms , 2011 .

[61]  W. Haeberli Die Basis-Temperatur der winterlichen Schneedecke als moglicher Indikator fur die Verbreitung von Permafrost in den Alpen , 1973 .

[62]  Luis Lliboutry Traité de Glaciologie , 1968 .

[63]  Mathias Jacob Comments on "Debris-Covered Glaciers in the Sierra Nevada, California, and Their Implications for Snowline Reconstruction," by D. H. Clark, M. M. Clark, and A. R. Gillespie , 1994, Quaternary Research.

[64]  Christophe Kinnard,et al.  Internal structure and composition of a rock glacier in the Andes (upper Choapa valley, Chile) using borehole information and ground-penetrating radar , 2013, Annals of Glaciology.

[65]  F. Pellicciotti,et al.  Changes of glaciers in the Andes of Chile and priorities for future work. , 2014, The Science of the total environment.