On the annihilation of dislocation dipoles in metals

During plastic deformation, there is a wealth of dislocation reactions, in which dislocation dipoles may play an important role. In this review, first, the history of dislocation dipole annihilation is revisited. Then, recent progresses in elucidating the atomic-scale processes during dipole annihilation are presented with examples from representative systems. Last, the consequence of dipole annihilation, as well as experimental verifications are introduced.

[1]  D. Rodney,et al.  Dislocation dipole-induced strengthening in intermetallic TiAl , 2018 .

[2]  R. Yang,et al.  Defect clustering upon dislocation annihilation in α-titanium and α-zirconium with hexagonal close-packed structure , 2014 .

[3]  M. Niewczas Intermittent plastic flow of single crystals: central problems in plasticity: A review , 2014 .

[4]  F. Appel,et al.  Deformation-induced internal stresses in multiphase titanium aluminide alloys , 2014 .

[5]  H. Wang,et al.  Interstitial loop strengthening upon deformation in aluminum via molecular dynamics simulations , 2013 .

[6]  E. Kozeschnik,et al.  Role of vacancies in work hardening and fatigue of TiAl alloys , 2013 .

[7]  D. Rodney,et al.  Atomistic investigation of the annihilation of non-screw dislocation dipoles in Al, Cu, Ni and γ-TiAl , 2013 .

[8]  D. Rodney,et al.  Defect kinetics on experimental timescales using atomistic simulations , 2013 .

[9]  D. Rodney,et al.  Pentavacancy as the key nucleus for vacancy clustering in aluminum. , 2011 .

[10]  S. Brinckmann,et al.  On the formation of vacancies by edge dislocation dipole annihilation in fatigued copper , 2011 .

[11]  H. Wang,et al.  The formation of stacking fault tetrahedra in Al and Cu: I. Dipole annihilation and the nucleation stage , 2011 .

[12]  R. Yang,et al.  The formation of stacking fault tetrahedra in Al and Cu II. SFT growth by successive absorption of vacancies generated by dipole annihilation (vol 59, pg 10, 2011) , 2011 .

[13]  B. Yildiz,et al.  Unfaulting mechanism of trapped self-interstitial atom clusters in bcc Fe: A kinetic study based on the potential energy landscape , 2010 .

[14]  H. Wang,et al.  The transformation of narrow dislocation dipoles in selected fcc metals and in γ-TiAl , 2009 .

[15]  Y. Chiu,et al.  Local dislocation reactions, self-organization and hardening in single slip , 2009 .

[16]  H. Wang,et al.  The transformation of edge dislocation dipoles in aluminium , 2008 .

[17]  Y. Chiu,et al.  Equilibrium and passing properties of dislocation dipoles , 2007 .

[18]  P. Veyssiére The weak-beam technique applied to the analysis of materials properties , 2006 .

[19]  Y. Chiu,et al.  Dislocation micromechanisms under single slip conditions , 2006 .

[20]  P. Pilvin,et al.  Dipole heights in cyclically deformed polycrystalline AISI 316L stainless steel , 2005 .

[21]  T. Nakano,et al.  The dependence of the faulted dipole density on load orientation in γ-TiAl , 2003 .

[22]  T. Nakano,et al.  The nucleation of faulted dipoles at intersection jogs in γ-TiAl , 2003 .

[23]  M. E. Kassner,et al.  Primary and secondary dislocation dipole heights in cyclically deformed copper single crystals , 2001 .

[24]  M. E. Kassner,et al.  Determination of internal stresses in cyclically deformed copper single crystals using convergent-beam electron diffraction and dislocation dipole separation measurements , 2000 .

[25]  V. Pontikis,et al.  Numerical study of the athermal annihilation of edge-dislocation dipoles , 2000 .

[26]  J. Kratochvíl,et al.  Elastic model for the sweeping of dipolar loops , 2000 .

[27]  P. Hähner,et al.  On the dislocation dynamics of persistent slip bands in cyclically deformed F.C.C. metals , 1998 .

[28]  P. Hähner,et al.  The Dislocation Microstructure of Cyclically Deformed Nickel Single Crystals at Different Temperatures , 1997 .

[29]  B. Tippelt Influence of temperature on microstructural parameters of cyclically deformed nickel single crystals , 1996 .

[30]  K. Hemker,et al.  Characterizing faulted dipoles in deformed gamma TiAl , 1996 .

[31]  P. Hähner The dynamics of dislocation dipoles during single glide , 1996 .

[32]  I. Jones,et al.  Further verification of 1/3 type faulted dipoles in TiAl , 1995 .

[33]  Q. Cai,et al.  The Observations on Faulted Dipoles in Deformed Tial—Based Alloys , 1994 .

[34]  K. Hemker,et al.  Characterizing faulted dipoles in TiAl with electron microscopy and computed image simulations , 1993 .

[35]  Chen Chen,et al.  Observations and formation mechanism of type faulted dipoles in TiAl Deformed at room temperature , 1992 .

[36]  G. Tichy,et al.  Modelling of edge dislocation dipoles in face-centred-cubic lattices , 1989 .

[37]  J. Rabier,et al.  On the core structures of edge dislocations in NaCl and MgO: consequences for the core configurations of dislocation dipoles , 1989 .

[38]  B. Joós,et al.  Dislocations in two dimensions I. Floating systems , 1986 .

[39]  U. Essmann Irreversibility of cyclic slip in persistent slip bands of fatigued pure f.c.c. metals , 1982 .

[40]  U. Gösele,et al.  A model of extrusions and intrusions in fatigued metals I. Point-defect production and the growth of extrusions , 1981 .

[41]  H. Mughrabi,et al.  Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities , 1979 .

[42]  L. M. Brown,et al.  Vacancy dipoles in fatigued copper , 1976 .

[43]  J. Antonopoulos,et al.  Weak-beam study of dislocation structures in fatigued copper , 1976 .

[44]  U. Essmann,et al.  Slip in copper crystals following weak neutron bombardment , 1973 .

[45]  J. Grosskreutz,et al.  The Influence of Point-Defect Clusters on Fatigue Hardening of Copper Single Crystals , 1972, June 16.