Splines in the Space of Shells

Cubic splines in Euclidean space minimize the mean squared acceleration among all curves interpolating a given set of data points. We extend this observation to the Riemannian manifold of discrete shells in which the associated metric measures both bending and membrane distortion. Our generalization replaces the acceleration with the covariant derivative of the velocity. We introduce an effective time‐discretization for this novel paradigm for navigating shell space. Further transferring this concept to the space of triangular surface descriptors—edge lengths, dihedral angles, and triangle areas—results in a simplified interpolation method with high computational efficiency.

[1]  Hans-Peter Seidel,et al.  Animating articulated characters using wiggly splines , 2015, Symposium on Computer Animation.

[2]  Johannes Wallner Existence of set-interpolating and energy-minimizing curves , 2004, Comput. Aided Geom. Des..

[3]  Nira Dyn,et al.  Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..

[4]  Martin Rumpf,et al.  Bézier Curves in the Space of Images , 2015, SSVM.

[5]  H BartelsRichard,et al.  Interpolating splines with local tension, continuity, and bias control , 1984 .

[6]  Martin Rumpf,et al.  Time‐Discrete Geodesics in the Space of Shells , 2012, Comput. Graph. Forum.

[7]  Franccois-Xavier Vialard,et al.  Shape Splines and Stochastic Shape Evolutions: A Second Order Point of View , 2010, 1003.3895.

[8]  Rudolf M.J. van Damme,et al.  Hermite-interpolatory subdivision schemes , 1998 .

[9]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[10]  Martin Rumpf,et al.  Exploring the Geometry of the Space of Shells , 2014, Comput. Graph. Forum.

[11]  K. Hormann,et al.  Multi‐Scale Geometry Interpolation , 2010, Comput. Graph. Forum.

[12]  M. Kass,et al.  Animating oscillatory motion with overlap: wiggly splines , 2008, SIGGRAPH 2008.

[13]  John Anderson,et al.  Animating oscillatory motion with overlap: wiggly splines , 2008, ACM Trans. Graph..

[14]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[15]  M. Rumpf,et al.  Variational time discretization of geodesic calculus , 2012, 1210.2097.

[16]  M. Kilian,et al.  Geometric modeling in shape space , 2007, SIGGRAPH 2007.

[17]  Markus Gross,et al.  Deformation Transfer for Detail-Preserving Surface Editing , 2006 .

[18]  Nira Dyn,et al.  Interpolatory Subdivision Schemes , 2002, Tutorials on Multiresolution in Geometric Modelling.

[19]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[20]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[21]  Peter Schröder,et al.  Multiscale Representations for Manifold-Valued Data , 2005, Multiscale Model. Simul..

[22]  Lyle Noakes,et al.  Bézier curves and C2 interpolation in Riemannian manifolds , 2007, J. Approx. Theory.

[23]  C. Reinsch Smoothing by spline functions , 1967 .

[24]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[25]  P. Thomas Fletcher,et al.  Polynomial Regression on Riemannian Manifolds , 2012, ECCV.

[26]  Long Quan,et al.  Image deblurring with blurred/noisy image pairs , 2007, SIGGRAPH 2007.

[27]  Mario Botsch,et al.  Example‐Driven Deformations Based on Discrete Shells , 2011, Comput. Graph. Forum.

[28]  Christoph von Tycowicz,et al.  Geometric Flows of Curves in Shape Space for Processing Motion of Deformable Objects , 2016, Comput. Graph. Forum.

[29]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[30]  Helmut Pottmann,et al.  A variational approach to spline curves on surfaces , 2005, Comput. Aided Geom. Des..

[31]  TerzopoulosDemetri,et al.  Elastically deformable models , 1987 .

[32]  John Lasseter,et al.  Principles of traditional animation applied to 3D computer animation , 1987, SIGGRAPH.

[33]  LasseterJohn Principles of traditional animation applied to 3D computer animation , 1987 .

[34]  N. Dyn Subdivision schemes in CAGD , 1992 .

[35]  Richard H. Bartels,et al.  Interpolating splines with local tension, continuity, and bias control , 1984, SIGGRAPH.

[36]  Y. Wang,et al.  Linear Surface Reconstruction from Discrete Fundamental Forms on Triangle Meshes , 2012, Comput. Graph. Forum.

[37]  AndersonJohn,et al.  Animating oscillatory motion with overlap , 2008 .