Anisotropic parameters and P-wave velocity for orthorhombic media

Although orthorhombic (or orthotropic) symmetry is believed to be common for fractured reservoirs, the difficulties in dealing with nine independent elastic constants have precluded this model from being used in seismology. A notation introduced in this work is designed to help make seismic inversion and processing for orthorhombic media more practical by simplifying the description of a wide range of seismic signatures. Taking advantage of the fact that the Christoffel equation has the same form in the symmetry planes of orthorhombic and transversely isotropic (TI) media, we can replace the stiffness coefficients by two vertical (P and S) velocities and seven dimensionless parameters that represent an extension of Thomsen's anisotropy coefficients to orthorhombic models. By design, this notation provides a uniform description of anisotropic media with both orthorhombic and TI symmetry. The dimensionless anisotropic parameters introduced here preserve all attractive features of Thomsen notation in treatin...

[1]  I. Tsvankin P-wave signatures and notation for transversely isotropic media: An overview , 1996 .

[2]  C. Sayers P-wave propagation in weakly anisotropic media , 1994 .

[3]  I. Tsvankin Reflection moveout and parameter estimation for horizontal transverse isotropy , 1997 .

[4]  Ilya Tsvankin,et al.  Normal moveout from dipping reflectors in anisotropic media , 1995 .

[5]  Ilya Tsvankin,et al.  Nonhyperbolic reflection moveout in anisotropic media , 1994 .

[6]  S. Crampin Evidence for aligned cracks in the Earth's crust , 1985 .

[7]  Leon Thomsen,et al.  Reflection seismology over azimuthally anisotropic media , 1988 .

[8]  D. Gajewski Radiation from point sources in general anisotropic media , 1993 .

[9]  Cleve Moler,et al.  Mathematical Handbook for Scientists and Engineers , 1961 .

[10]  Andreas Rüger,et al.  Variation of P-wave reflectivity with offset and azimuth in anisotropic media , 1998 .

[11]  K. Helbig LONGITUDINAL DIRECTIONS IN MEDIA OF ARBITRARY ANISOTROPY , 1993 .

[12]  M. Schoenberg,et al.  Anomalous polarization of elastic waves in transversely isotropic media , 1985 .

[13]  Philip Wild,et al.  The range of effects of azimuthal isotropy and EDA anisotropy in sedimentary basins , 1991 .

[14]  R. J. Brown,et al.  Scaled physical modelling of anisotropic wave propagation: multioffset profiles over an orthorhombic medium , 1991 .

[15]  Ilya Tsvankin,et al.  Inversion of reflection traveltimes for transverse isotropy , 1995 .

[16]  R. G. Pratt,et al.  Travel time tomography in anisotropic media , 1990 .

[17]  V. Grechka,et al.  3-D description of normal moveout in anisotropic media: 66th Ann , 1996 .

[18]  R. G. Pratt,et al.  Traveltime tomography in anisotropic media—I. Theory , 1992 .

[19]  I. Tsvankin,et al.  Synthesis of body wave seismograms from point sources in anisotropic media , 1990 .

[20]  V. Grechka,et al.  Geometrical structure of shear wave surfaces near singularity directions in anisotropic media , 1993 .

[21]  Tariq Alkhalifah,et al.  Velocity analysis for transversely isotropic media , 1995 .

[22]  H. Lynn,et al.  Correlation between P-wave AVOA and S-wave traveltime anisotropy in a naturally fractured gas reservoir , 1996 .

[23]  J. Ernest Wilkins,et al.  Mathematical Handbook for Scientists and Engineers , 1962 .

[24]  Andreas Rüger,et al.  P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry , 1997 .

[25]  Michael Schoenberg,et al.  Orthorhombic media: Modeling elastic wave behavior in a vertically fractured earth , 1997 .

[26]  P. Rasolofosaon,et al.  Elastic-wave velocities in anisotropic media of arbitrary symmetry-generalization of Thomsen's parameters ε, δ and γ , 1997 .

[27]  James G. Berryman,et al.  Long-wave elastic anisotropy in transversely isotropic media , 1979 .

[28]  Richard Van Dok,et al.  Azimuthal anisotropy in P-wave 3-D (multiazimuth) data , 1996 .