EQSM: An efficient high quality surface grid generation method based on remeshing

The EQSM method for the generation of unstructured triangular surface grids is presented. The method is based on remeshing techniques and avoids the need for traditional mesh triangulation approaches, such as the advancing front and the Delaunay methods. Normalized edge lengths, based on a metric derived from curvature or from a user-specified spacing, are employed as the remeshing criterion. It is assumed that the geometry is input in the form of composite parametric surfaces, with analytic definition or Ferguson- or Nurbs-type multiple patch representation. Examples, based upon typical aircraft geometries, are included to demonstrate how high quality grids can be efficiently generated on surfaces that exhibit a high degree of geometric complexity.

[1]  Chi King Lee,et al.  Automatic metric advancing front triangulation over curved surfaces , 2000 .

[2]  Frédéric Hecht,et al.  MESH GRADATION CONTROL , 1998 .

[3]  H. Borouchaki,et al.  Interpolating and meshing 3D surface grids , 2003 .

[4]  F. Hermeline,et al.  Diagonal swap procedures and characterizations of 2D-Delaunay triangulations , 1990 .

[5]  David L. Marcum,et al.  Efficient Generation of High-Quality Unstructured Surface and Volume Grids , 2001, Engineering with Computers.

[6]  Alain Rassineux,et al.  Surface remeshing by local hermite diffuse interpolation , 2000 .

[7]  Houman Borouchaki,et al.  Surface mesh quality evaluation , 1999 .

[8]  H. Borouchaki,et al.  Geometric surface mesh optimization , 1998 .

[9]  Pascal J. Frey,et al.  About Surface Remeshing , 2000, IMR.

[10]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[11]  P. George,et al.  Parametric surface meshing using a combined advancing-front generalized Delaunay approach , 2000 .

[12]  S. Lo Automatic mesh generation over intersecting surfaces , 1995 .

[13]  P. Knupp Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated qu , 2000 .

[14]  R. Löhner Regridding Surface Triangulations , 1996 .

[15]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[16]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[17]  K. Shimada,et al.  Anisotropic Triangular Meshing of Parametric Surfaces via Close Packing of Ellipsoidal Bubbles , 2007 .

[18]  P. Knupp Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .

[19]  H. L. de Cougny,et al.  Refinement and coarsening of surface meshes , 1998, Engineering with Computers.

[20]  Jean-Christophe Cuillière,et al.  Generation of a finite element MESH from stereolithography (STL) files , 2002, Comput. Aided Des..

[21]  S. H. Lo,et al.  Finite element mesh generation over analytical curved surfaces , 1996 .

[22]  Nigel P. Weatherill,et al.  Topology Abstraction of Surface Models for Three-Dimensional Grid Generation , 2001, Engineering with Computers.

[23]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[24]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[25]  Steven J. Owen,et al.  Advancing Front Surface Mesh Generation in Parametric Space Using a Riemannian Surface Definition , 1998, IMR.

[26]  David Nixon,et al.  Automatic Generation of CFD-Ready Surface Triangulations from CAD Geometry , 1999 .

[27]  J. Peters,et al.  C 1 -surface splines , 1995 .

[28]  Kazuhiro Nakahashi,et al.  Direct surface triangulation using the advancing front method , 1995 .

[29]  David L. Marcum,et al.  Unstuctured Surface Grid Generation Using Global Mapping and Physical Space Approximation , 1999, IMR.

[30]  Günther Greiner,et al.  Remeshing triangulated surfaces with optimal parameterizations , 2001, Comput. Aided Des..

[31]  Bernd E. Hirsch,et al.  Triangulation of trimmed surfaces in parametric space , 1992, Comput. Aided Des..

[32]  Rainald Löhner,et al.  Surface triangulation over intersecting geometries , 1999 .

[33]  Craig Gotsman,et al.  Explicit Surface Remeshing , 2003, Symposium on Geometry Processing.

[34]  Nigel P. Weatherill,et al.  Grid adaptation using a distribution of sources applied to inviscid compressible flow simulations , 1994 .

[35]  R. D. Small,et al.  Numerical methods for partial differential equations based on power series , 1983 .