Journal Pre-proof The Biomechanics of Ultra-Stretchable Nerves

model for understanding the functionality and pathology related to nerve extension and reversible elongation.

[1]  A. Ayali,et al.  The biomechanics of the locust ovipositor valves: a unique digging apparatus , 2021, bioRxiv.

[2]  C. R. Ethier,et al.  Assessment of the Viscoelastic Mechanical Properties of the Porcine Optic Nerve Head using Micromechanical Testing and Finite Element Modeling , 2021, bioRxiv.

[3]  Rangana Wijayapala,et al.  Achieving high-speed retraction in a stretchable hydrogel. , 2020, ACS applied materials & interfaces.

[4]  Kwanghun Chung,et al.  Elasticizing tissues for reversible shape transformation and accelerated molecular labeling , 2020, Nature Methods.

[5]  Hongbo Zeng,et al.  Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for highly sensitive soft electronic sensors , 2020 .

[6]  J. Wenk,et al.  Quantification of regional right ventricular strain in healthy rats using 3D spiral cine dense MRI. , 2019, Journal of biomechanics.

[7]  Mohammad Hosseini-Farid,et al.  A compressible hyper-viscoelastic material constitutive model for human brain tissue and the identification of its parameters , 2019, International Journal of Non-Linear Mechanics.

[8]  A. Light,et al.  Rapid Stretch Injury to Peripheral Nerves: Biomechanical Results. , 2018, Neurosurgery.

[9]  G. Whitesides Soft Robotics. , 2018, Angewandte Chemie.

[10]  K. Teferra,et al.  Uncertainty quantification for constitutive model calibration of brain tissue. , 2018, Journal of the mechanical behavior of biomedical materials.

[11]  Carmel Majidi,et al.  Bio-inspired soft robotics: Material selection, actuation, and design , 2018, Extreme Mechanics Letters.

[12]  Thomas J. Wallin,et al.  3D printing of soft robotic systems , 2018, Nature Reviews Materials.

[13]  Suzanne M Cox,et al.  The principles of cascading power limits in small, fast biological and engineered systems , 2018, Science.

[14]  E. Kuhl,et al.  Viscoelastic parameter identification of human brain tissue. , 2017, Journal of the mechanical behavior of biomedical materials.

[15]  Matthew H. Everhart,et al.  Mimicking biological stress–strain behaviour with synthetic elastomers , 2017, Nature.

[16]  E. Kuhl,et al.  A family of hyperelastic models for human brain tissue , 2017 .

[17]  C. Birkl,et al.  Mechanical characterization of human brain tissue. , 2017, Acta biomaterialia.

[18]  E. Kuhl,et al.  Constitutive Modeling of Brain Tissue: Current Perspectives , 2016 .

[19]  P. Janmey,et al.  A comparison of hyperelastic constitutive models applicable to brain and fat tissues , 2015, Journal of The Royal Society Interface.

[20]  R. Shadwick,et al.  Stretchy nerves are an essential component of the extreme feeding mechanism of rorqual whales , 2015, Current Biology.

[21]  K. Thompson,et al.  On the Origin of Grasshopper Oviposition Behavior: Structural Homology in Pregenital and Genital Motor Systems , 2014, Brain, Behavior and Evolution.

[22]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[23]  Z. Suo,et al.  Highly stretchable and tough hydrogels , 2012, Nature.

[24]  Ronald Deumens,et al.  Repairing injured peripheral nerves: Bridging the gap , 2010, Progress in Neurobiology.

[25]  J. Vincent How does the female locust dig her oviposition hole , 2009 .

[26]  Jochen Guck,et al.  Viscoelastic properties of individual glial cells and neurons in the CNS , 2006, Proceedings of the National Academy of Sciences.

[27]  E. Hulata,et al.  Adult, sex-specific behavior characterized by elevated neuronal functional complexity , 2006, Neuroreport.

[28]  Benjamin S Boyd,et al.  Structure and biomechanics of peripheral nerves: nerve responses to physical stresses and implications for physical therapist practice. , 2006, Physical therapy.

[29]  Amir Ayali,et al.  The locust frontal ganglion: a central pattern generator network controlling foregut rhythmic motor patterns. , 2002, The Journal of experimental biology.

[30]  K. Chinzei,et al.  Mechanical properties of brain tissue in tension. , 2002, Journal of biomechanics.

[31]  M. Burrows The Neurobiology of an Insect Brain , 1996 .

[32]  H. Koike The extensibility of Aplysia nerve and the determination of true axon length. , 1987, The Journal of physiology.

[33]  K J Thompson,et al.  Oviposition digging in the grasshopper. I. Functional anatomy and the motor programme. , 1986, The Journal of experimental biology.

[34]  M. J. Rice,et al.  Superextension and supercontraction in locust ovipositor muscles , 1983 .

[35]  K. Pearson,et al.  Effects of temperature on identified central neurons that control jumping in the grasshopper , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  D. Pleasure,et al.  A study of nerve regeneration and neuroma formation after nerve suture by various techniques. , 1976, The Journal of hand surgery.

[37]  D. Newth THE ANATOMY OF THE NERVOUS SYSTEM OF OCTOPUS VULGARIS , 1972 .

[38]  E. Clarke,et al.  Spiral nerve bands of Fontana. , 1972, British medical journal.

[39]  A K Ommaya,et al.  Mechanical properties of tissues of the nervous system. , 1968, Journal of biomechanics.

[40]  Zuoying Yuan,et al.  A hydra tentacle-inspired hydrogel with underwater ultra-stretchability for adhering adipose surfaces , 2022 .