Single lithium-ion conducting solid polymer electrolytes: advances and perspectives.

Electrochemical energy storage is one of the main societal challenges to humankind in this century. The performances of classical Li-ion batteries (LIBs) with non-aqueous liquid electrolytes have made great advances in the past two decades, but the intrinsic instability of liquid electrolytes results in safety issues, and the energy density of the state-of-the-art LIBs cannot satisfy the practical requirement. Therefore, rechargeable lithium metal batteries (LMBs) have been intensively investigated considering the high theoretical capacity of lithium metal and its low negative potential. However, the progress in the field of non-aqueous liquid electrolytes for LMBs has been sluggish, with several seemingly insurmountable barriers, including dendritic Li growth and rapid capacity fading. Solid polymer electrolytes (SPEs) offer a perfect solution to these safety concerns and to the enhancement of energy density. Traditional SPEs are dual-ion conductors, in which both cations and anions are mobile and will cause a concentration polarization thus leading to poor performances of both LIBs and LMBs. Single lithium-ion (Li-ion) conducting solid polymer electrolytes (SLIC-SPEs), which have anions covalently bonded to the polymer, inorganic backbone, or immobilized by anion acceptors, are generally accepted to have advantages over conventional dual-ion conducting SPEs for application in LMBs. A high Li-ion transference number (LTN), the absence of the detrimental effect of anion polarization, and the low rate of Li dendrite growth are examples of benefits of SLIC-SPEs. To date, many types of SLIC-SPEs have been reported, including those based on organic polymers, organic-inorganic hybrid polymers and anion acceptors. In this review, a brief overview of synthetic strategies on how to realize SLIC-SPEs is given. The fundamental physical and electrochemical properties of SLIC-SPEs prepared by different methods are discussed in detail. In particular, special attention is paid to the SLIC-SPEs with high ionic conductivity and high LTN. Finally, perspectives on the main challenges and focus on the future research are also presented.

[1]  Lide M. Rodriguez-Martinez,et al.  Estimation of energy density of Li-S batteries with liquid and solid electrolytes , 2016 .

[2]  Federico Bella,et al.  Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature , 2016 .

[3]  Hansong Cheng,et al.  A mechanically robust porous single ion conducting electrolyte membrane fabricated via self-assembly , 2016 .

[4]  Hansong Cheng,et al.  A pre-lithiated phloroglucinol based 3D porous framework as a single ion conducting electrolyte for lithium ion batteries , 2016 .

[5]  D. Mecerreyes,et al.  Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries. , 2016, ACS applied materials & interfaces.

[6]  Heng Zhang,et al.  Li[(FSO2)(n-C4F9SO2)N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis , 2016 .

[7]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[8]  M. Armand,et al.  Impact of the functional group in the polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrodes , 2016 .

[9]  Hansong Cheng,et al.  Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp 3 boron-based solid single ion conducting polymer electrolyte , 2016 .

[10]  Hansong Cheng,et al.  High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte , 2016, Scientific Reports.

[11]  Heng Zhang,et al.  Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. , 2016, Angewandte Chemie.

[12]  H. Allcock The expanding field of polyphosphazene high polymers. , 2016, Dalton transactions.

[13]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[14]  Heng Zhang,et al.  Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells: Physicochemical and electrochemical properties , 2015 .

[15]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[16]  Zhiqiang Gao,et al.  A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries , 2015 .

[17]  M. Armand,et al.  All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes. , 2015, ChemSusChem.

[18]  N. Balsara,et al.  Effect of Lithium-Ion Concentration on Morphology and Ion Transport in Single-Ion-Conducting Block Copolymer Electrolytes , 2015 .

[19]  R. Marcilla,et al.  Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s , 2015 .

[20]  Hui Zhao,et al.  Fumed Silica-Based Single-Ion Nanocomposite Electrolyte for Lithium Batteries. , 2015, ACS applied materials & interfaces.

[21]  N. Dudney,et al.  Handbook of Solid State Batteries , 2015 .

[22]  Y. Andreev,et al.  Crystalline polymer electrolytes , 2015 .

[23]  F. Beyer,et al.  Sulfonimide-Containing Triblock Copolymers for Improved Conductivity and Mechanical Performance , 2015 .

[24]  J. Rolland,et al.  Single-ion diblock copolymers for solid-state polymer electrolytes , 2015 .

[25]  Heng Zhang,et al.  Recent progresses on electrolytes of fluorosulfonimide anions for improving the performances of rechargeable Li and Li-ion battery , 2015 .

[26]  Hansong Cheng,et al.  A novel sp3Al-based porous single-ion polymer electrolyte for lithium ion batteries , 2015 .

[27]  G. Cui,et al.  Single-ion dominantly conducting polyborates towards high performance electrolytes in lithium batteries , 2015 .

[28]  Heng Zhang,et al.  Solid polymer electrolyte comprised of lithium salt/ether functionalized ammonium-based polymeric ionic liquid with bis(fluorosulfonyl)imide , 2015 .

[29]  Karim Zaghib,et al.  New lithium metal polymer solid state battery for an ultrahigh energy: nano C-LiFePO₄ versus nano Li1.2V₃O₈. , 2015, Nano letters.

[30]  Zhiqiang Gao,et al.  Melamine–terephthalaldehyde–lithium complex: a porous organic network based single ion electrolyte for lithium ion batteries , 2015 .

[31]  Xiangming He,et al.  Composite electrospun membranes containing a monodispersed nano-sized TiO2@Li+ single ionic conductor for Li-ion batteries , 2015 .

[32]  B. McCloskey,et al.  Nonaqueous Li-air batteries: a status report. , 2014, Chemical reviews.

[33]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[34]  G. Cui,et al.  A single-ion gel polymer electrolyte system for improving cycle performance of LiMn2O4 battery at elevated temperatures , 2014 .

[35]  Hansong Cheng,et al.  Design and synthesis of a single ion conducting block copolymer electrolyte with multifunctionality for lithium ion batteries , 2014 .

[36]  G. Cui,et al.  A single-ion gel polymer electrolyte based on polymeric lithium tartaric acid borate and its superior battery performance , 2014 .

[37]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[38]  O. Fontaine,et al.  Single-ion conductor nanocomposite organic–inorganic hybrid membranes for lithium batteries , 2014 .

[39]  Heng Zhang,et al.  Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte , 2014 .

[40]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[41]  S. Granados-Focil,et al.  Poly(ethylenimine)-Based Polymer Blends as Single-Ion Lithium Conductors , 2014 .

[42]  Hansong Cheng,et al.  A gel single ion polymer electrolyte membrane for lithium-ion batteries with wide-temperature range operability , 2014 .

[43]  K. Winey,et al.  Influence of Solvating Plasticizer on Ion Conduction of Polysiloxane Single-Ion Conductors , 2014 .

[44]  Hansong Cheng,et al.  Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range. , 2014, ChemSusChem.

[45]  M. Armand,et al.  Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization , 2014 .

[46]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[47]  M. Marcinek,et al.  Optimization of the lithium-ion cell electrolyte composition through the use of the LiTDI salt , 2014 .

[48]  A. Fannir,et al.  Self-standing single lithium ion conductor polymer network with pendant trifluoromethanesulfonylimide groups: Li+ diffusion coefficients from PFGSTE NMR , 2013 .

[49]  Jae-Hun Kim,et al.  Metallic anodes for next generation secondary batteries. , 2013, Chemical Society reviews.

[50]  M. Armand,et al.  Cation only conduction in new polymer–SiO2 nanohybrids: Na+ electrolytes , 2013 .

[51]  M. Antonietti,et al.  Poly(ionic liquid)s: An update , 2013 .

[52]  M. Armand,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[53]  M. Armand,et al.  Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions , 2013 .

[54]  G. Cui,et al.  Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries , 2013 .

[55]  Lili Liu,et al.  A single-ion polymer electrolyte based on boronate for lithium ion batteries , 2012 .

[56]  J. Runt,et al.  Synthesis and Lithium Ion Conduction of Polysiloxane Single-Ion Conductors Containing Novel Weak-Binding Borates , 2012 .

[57]  Wei-Wei Cui,et al.  Synthesis and Electrochemical Properties of Poly(lithium 2-acrylamido-2-methylpropanesulfonate-co-vinyl triethoxysilane)-Based Interpenetrating Network Type Single-Ion Conducting Polymer Gel Electrolytes , 2012 .

[58]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[59]  Rachid Meziane,et al.  Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries , 2011 .

[60]  Bruno Scrosati,et al.  Polymer electrolytes: Present, past and future , 2011 .

[61]  D. Mecerreyes Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes , 2011 .

[62]  M. Armand,et al.  New covalent salts of the 4+ V class for Li batteries , 2011 .

[63]  Sabu Thomas,et al.  Influence of Calix[2]-p-benzo[4]pyrrole on the electrochemical properties of poly(ethylene oxide)-based electrolytes for lithium batteries , 2011 .

[64]  E. Quartarone,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[65]  Wenfang Feng,et al.  Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for l , 2011 .

[66]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[67]  Zhibin Zhou,et al.  Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells , 2011 .

[68]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[69]  Jeffrey W. Fergus,et al.  Ceramic and polymeric solid electrolytes for lithium-ion batteries , 2010 .

[70]  M. Armand,et al.  Efficient Preparation of (Fluorosulfonyl)(pentafluoroethanesulfonyl)imide and Its Alkali Salts , 2010 .

[71]  M. Armand,et al.  New type of imidazole based salts designed specifically for lithium ion batteries , 2010 .

[72]  G. Żukowska,et al.  Effect of calix[6]pyrrole anion receptor addition on properties of PEO-based solid polymer electrolytes doped with LiTf and LiTfSI salts , 2010 .

[73]  M. B. Herath,et al.  Ionic conduction in polyether-based lithium arylfluorosulfonimide ionic melt electrolytes , 2009 .

[74]  M. Jansen,et al.  Synthesis and characterization of solid single ion conductors based on poly[lithium tetrakis(ethyleneboryl)borate] , 2009 .

[75]  Y. Tomita,et al.  Synthesis and ion conductive characteristics of inorganic–organic hybrid polymers bearing a tetraarylpentaborate unit , 2008 .

[76]  M. Armand,et al.  Building better batteries , 2008, Nature.

[77]  D. Desmarteau,et al.  Lithium-Conducting Ionic Melt Electrolytes from Polyether-Functionalized Fluorosulfonimide Anions , 2007, ECS Transactions.

[78]  B. Scrosati,et al.  Advanced, lithium batteries based on high-performance composite polymer electrolytes , 2006 .

[79]  G. Żukowska,et al.  Influence of macromolecular additives on transport properties of lithium organic electrolytes , 2006 .

[80]  Jean-Marie Tarascon,et al.  Dendrite short-circuit and fuse effect on Li/polymer/Li cells , 2006 .

[81]  H. Allcock,et al.  Single ion conductors—polyphosphazenes with sulfonimide functional groups , 2006 .

[82]  A. Mayes,et al.  Synthesis and characterization of single-ion graft copolymer electrolytes , 2005 .

[83]  P. Johansson,et al.  Ab initio studies of complexation of anions to neutral species , 2005 .

[84]  B. Scrosati,et al.  Effect of calixpyrrole in PEO–LiBF4 polymer electrolytes , 2005 .

[85]  P. Johansson,et al.  A novel field of ab initio studies: complexation of simple anions within neutral cryptands , 2005 .

[86]  A. Mayes,et al.  Single-ion conducting polymer–silicate nanocomposite electrolytes for lithium battery applications , 2005 .

[87]  B. Scrosati,et al.  Anion-Binding Calixarene Receptors: Synthesis, Microstructure, and Effect on Properties of Polyether Electrolytes , 2005 .

[88]  J. Kerr,et al.  Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate , 2005 .

[89]  P. Johansson,et al.  IR spectroscopy and quantum mechanical calculations of lithium ion transport conditions in a single ion conducting polymer electrolyte , 2004 .

[90]  T. Fujinami,et al.  Lithium ion conductivity of blend polymer electrolytes based on borate polymers containing fluoroalkane dicarboxylate and poly(ethylene oxide) , 2004 .

[91]  Yang‐Kook Sun,et al.  Blended polymer electrolytes based on poly(lithium 4-styrene sulfonate) for the rechargeable lithium polymer batteries , 2004 .

[92]  Xiao‐Guang Sun,et al.  New single ion conductors (“polyBOP” and analogs) for rechargeable lithium batteries , 2004 .

[93]  Bruno Scrosati,et al.  Novel Solid Polymer Electrolytes with Single Lithium-Ion Transport , 2004 .

[94]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[95]  D. Desmarteau,et al.  Solid Polymer Electrolytes from Polyanionic Lithium Salts Based on the LiTFSI Anion Structure , 2004 .

[96]  J. Kerr,et al.  Network Single Ion Conductors Based on Comb-Branched Polyepoxide Ethers and Lithium Bis(allylmalonato)borate , 2004 .

[97]  T. Fujinami,et al.  Li-Ion Conductivity of Aluminate and Borate Complex Polymers Containing Fluoroalkane Dicarboxylate , 2004 .

[98]  J. Kerr,et al.  Synthesis and Characterization of Network Type Single Ion Conductors , 2004 .

[99]  M. Ratner,et al.  Synthesis of Comb Polysiloxane Polyelectrolytes Containing Oligoether and Perfluoroether Side Chains , 2003 .

[100]  M. Ratner,et al.  Ion Conductivity of Comb Polysiloxane Polyelectrolytes Containing Oligoether and Perfluoroether Sidechains , 2003 .

[101]  H. Ohno,et al.  Ion Conductive Characteristics of Alkylborane Type and Boric Ester Type Polymer Electrolytes Derived from Mesitylborane , 2003 .

[102]  M. Armand,et al.  NMR and conductivity study of polymer electrolytes in the imide family: P(EO)/Li[N(SO2CnF2n+1)(SO2CmF2m+1)]. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[103]  H. Ohno,et al.  Selective Ion Transport in Organoboron Polymer Electrolytes Bearing a Mesitylboron Unit , 2002 .

[104]  Wu Xu,et al.  Preparation and characterization of novel ''polyMOB'' polyanionic solid electrolytes with weak coulomb traps , 2002 .

[105]  S. Muto,et al.  Synthesis, Characterization, and Ion-Conductive Behavior in an Organic Solvent and in a Polyether of a Novel Lithium Salt of a Perfluorinated Polyimide Anion , 2002 .

[106]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[107]  D. P. Siska,et al.  Li+ conductivity of polysiloxane-trifluoromethylsulfonamide polyelectrolytes , 2001 .

[108]  T. Fujinami,et al.  Preparation and characterization of lithium ion conducting borosiloxane polymer electrolytes , 2001 .

[109]  A. Mayes,et al.  Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries , 2001 .

[110]  Ying Yang,et al.  Blended lithium ion conducting polymer electrolytes based on boroxine polymers , 2001 .

[111]  S. Muto,et al.  Anionic effect on ion transport properties in network polyether electrolytes , 2001 .

[112]  B. Scrosati,et al.  Nanocomposite polymer electrolytes and their impact on the lithium battery technology , 2000 .

[113]  G. Wegner,et al.  Novel cation conductors based on rigid-rod poly(p-phenylene)s , 2000 .

[114]  T. Fujinami,et al.  Molecular design of inorganic-organic hybrid polyelectrolytes to enhance lithium ion conductivity , 2000 .

[115]  M. Watanabe,et al.  Single ion conduction in polyether electrolytes alloyed with lithium salt of a perfluorinated polyimide , 2000 .

[116]  T. Fujinami,et al.  The use of boroxine rings for the development of high performance polymer electrolytes , 2000 .

[117]  Karen E. Thomas,et al.  Comparison of lithium-polymer cell performance with unity and nonunity transference numbers , 1999 .

[118]  T. Fujinami,et al.  Boroxine ring containing polymer electrolytes , 1999 .

[119]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[120]  J. Cowie,et al.  Novel single ion, comb-branched polymer electrolytes , 1999 .

[121]  T. Fujinami,et al.  Novel inorganic–organic polymer electrolytes – preparation and properties , 1998 .

[122]  Y. Nakai,et al.  Ion conduction in molten salts prepared by terminal-charged PEO derivatives , 1998 .

[123]  A. Zanelli,et al.  Composite polymer electrolytes with improved lithium metal electrode interfacial properties: I. Electrochemical properties of dry PEO-LiX systems , 1998 .

[124]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[125]  Zhiqiang Gao,et al.  Novel Alternating Comblike Copolymer Electrolytes with Single Lithium Ionic Conduction , 1998 .

[126]  W. Meyer,et al.  Polymer electrolytes for lithium-ion batteries. , 1998, Advanced materials.

[127]  K. Shigehara,et al.  Thioaluminate Polymer Complexes as Single-Ionic Solid Electrolytes , 1998 .

[128]  T. Fujinami,et al.  Siloxyaluminate Polymers with High Li+ Ion Conductivity , 1997 .

[129]  L. Krause,et al.  Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells , 1997 .

[130]  T. Fujinami,et al.  Li^+ Transference Number Enhancement in Polymer Electrolytes by Incorporation of Anion Trapping Boroxine Rings into the Polymer Host , 1997 .

[131]  Jung-Ki Park,et al.  Effects of cations on ionic states of poly(oligo-oxyethylene methacrylate-co-alkali metal acrylamidocaproate) single-ion conductor , 1997 .

[132]  Wu Xu,et al.  Single-Ion Conduction and Electrochemical Characteristics of Poly (Oxyethylene)/ Lithium Methoxy Oligo(Oxyethylene) Sulfate Blend , 1996 .

[133]  K. Shigehara,et al.  Synthesis of Aluminate Polymer Complexes as Single-Ionic Solid Electrolytes , 1996 .

[134]  M. Armand,et al.  Perfluorosulfonate-polyether based single ion conductors , 1995 .

[135]  Marc Doyle,et al.  The Use of Mathematical-Modeling in the Design of Lithium Polymer Battery Systems , 1995 .

[136]  M. Armand,et al.  Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes , 1995 .

[137]  M. Armand,et al.  Cationic conductivity in poly(oxyethylene oxide) networks , 1995 .

[138]  T. Fujinami,et al.  Aluminosilicate/poly(ethylene glycol) copolymers: A new class of polyelectrolytes , 1994 .

[139]  Michel Perrier,et al.  Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes , 1994 .

[140]  Marc Doyle,et al.  The importance of the lithium ion transference number in lithium/polymer cells , 1994 .

[141]  Liquan Chen,et al.  Electrical properties of a single lithium-ion conductor PMSEO-PLPMS , 1992 .

[142]  M. Ratner,et al.  Synthesis and Electrical Response of Single-Ion Conducting Network Polymers Based on Sodium Poly(tetraalkoxyaluminates) , 1991 .

[143]  Shengshui Zhang,et al.  Cationic Conductivity of Blend Complexes Composed of Poly[oligo(oxyethylene) methacrylate] and the Alkali Metal Salts of Poly(sulfoalkyl methacrylate) , 1991 .

[144]  H. Ishizaka,et al.  Poly[(ι-carboxy)oligo(oxyethylene) methacrylate] as a new type of polymeric solid electrolyte for alkali-metal ion transport , 1989 .

[145]  E. Tsuchida,et al.  Poly[lithium methacrylate-co-oligo(oxyethylene)methacrylate] as a solid electrolyte with high ionic conductivity , 1985 .

[146]  D. J. Bannister,et al.  Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers , 1984 .

[147]  P. V. Wright,et al.  An anomalous transition to a lower activation energy for dc electrical conduction above the glass‐transition temperature , 1976 .

[148]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .

[149]  M. Ling,et al.  Plasticized Polymer Composite Single Ion Conductors for Lithium Batteries , 2018 .

[150]  Dong‐Won Kim,et al.  High-Performance Lithium-Ion Polymer Cells Assembled with Composite Polymer Electrolytes based on Core-Shell Structured SiO2 Particles Containing Poly(lithium acrylate) in the Shell , 2015 .

[151]  L. A. Baker,et al.  Solid polymer electrolytes which contain tricoordinate boron for enhanced conductivity and transference numbers , 2013 .

[152]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[153]  A. Mayes,et al.  Effect of Counter Ion Placement on Conductivity in Single-Ion Conducting Block Copolymer Electrolytes , 2005 .

[154]  Wu Xu,et al.  Novel Polyanionic Solid Electrolytes with Weak Coulomb Traps and Controllable Caps and Spacers , 2002 .

[155]  Y. Nishi The development of lithium ion secondary batteries. , 2001 .

[156]  H. Ohno,et al.  High lithium ionic conductivity of poly(ethylene oxide)s having sulfonate groups on their chain ends , 1997 .

[157]  H. Ohno,et al.  Polyether/salt hybrid (IV). Effect of benzenesulfonate group(s) and PEO molecular weight on the bulk ionic conductivity , 1997 .

[158]  K. Shigehara,et al.  Attempts at lithium single-ionic conduction by anchoring sulfonate anions as terminating groups of oligo(oxyethylene) side chains in comb-type polyphosphazenes , 1994 .

[159]  M. Armand,et al.  Electrochemical study of linear and crosslinked POE-based polymer electrolytes , 1992 .

[160]  H. Ohno,et al.  Single-ion conduction in poly[(oligo(oxyethylene) methacrylate)-co-(alkali-metal methacrylates)] , 1988 .