Equivalent circuit modeling of the bistable conduction characteristics in electroformed thin dielectric films

Abstract In the last few years a number of models based on simple circuital representations have been proposed to account for the resistive switching (RS) current–voltage (I–V) characteristics of metal–insulator–metal (MIM) structures. These devices typically exhibit two well-defined conduction levels after electroforming often referred to as the low and high resistance states that can be cyclically reached by the application of bipolar periodic voltage or current. The resulting hysteretic behavior arises from a reversible change of the electron transmission properties of the insulating film driven by an external stimulus. In this paper, after an overview of a variety of RS model proposals relying on circuital descriptions and basic analytic expressions, a model based on the solution of the generalized diode equation is discussed. The model is simple and flexible and consists of two opposite-biased diodes with series and shunt resistances that represent the filamentary current pathway spanning the oxide layer as well as the possible parasitic effects. The model parameters are governed by a mathematical entity called the logistic hysteron that can be linked to the internal state equation of the so-called memristive systems. For illustrative purposes, the switching I–V characteristics of TiO2-based MIM structures electroformed with different current compliances are examined in detail using this approach. Experimental results on bipolar RS by other authors are also assessed within the same framework.

[1]  Shuxiang Wu,et al.  Nanoscale resistive switching and filamentary conduction in NiO thin films , 2010 .

[2]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[3]  Anne Siemon,et al.  Applicability of Well-Established Memristive Models for Simulations of Resistive Switching Devices , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  H. Grampeix,et al.  Resistive switching of HfO2-based Metal–Insulator–Metal diodes: Impact of the top electrode material , 2012 .

[5]  H. Hwang,et al.  Uniform resistive switching with a thin reactive metal interface layer in metal-La0.7Ca0.3MnO3-metal heterostructures , 2008 .

[6]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[7]  H. Hada,et al.  Resistance Controllability of $\hbox{Ta}_{2} \hbox{O}_{5}/\hbox{TiO}_{2}$ Stack ReRAM for Low-Voltage and Multilevel Operation , 2010, IEEE Electron Device Letters.

[8]  Daesung Park,et al.  Scaling Potential of Local Redox Processes in Memristive SrTiO $_{3}$ Thin-Film Devices , 2012, Proceedings of the IEEE.

[9]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[10]  Qi Liu,et al.  Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications , 2010, Nanotechnology.

[11]  C. Yoshida,et al.  High speed resistive switching in Pt∕TiO2∕TiN film for nonvolatile memory application , 2007 .

[12]  T. Hasegawa,et al.  Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch , 2012, Nanotechnology.

[13]  L. Goux,et al.  Dynamic ‘hour glass’ model for SET and RESET in HfO2 RRAM , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[14]  Sang Chul Lee,et al.  Nonvolatile resistive switching in Pr0.7Ca0.3MnO3 devices using multilayer graphene electrodes , 2011 .

[15]  M. Tsai,et al.  Investigating the improvement of resistive switching trends after post-forming negative bias stress treatment , 2011 .

[16]  Cheol Seong Hwang,et al.  Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films , 2007 .

[17]  S. Slesazeck,et al.  Filamentary resistive switching in amorphous and polycrystalline Nb2O5 thin films , 2012 .

[18]  J.C. Ellenbogen,et al.  Architectures for molecular electronic computers. I. Logic structures and an adder designed from molecular electronic diodes , 2000, Proceedings of the IEEE.

[19]  Sungho Kim,et al.  A Comprehensive Study of the Resistive Switching Mechanism in {Al/TiO}_{x}/{TiO}_{2}/{Al}-Structured RRAM , 2009 .

[20]  T. Lippert,et al.  Measurements of current-voltage-induced heating in the Al/SrTiO3−xNy/Al memristor during electroformation and resistance switching , 2009 .

[21]  K. Kinoshita,et al.  Insight into distribution and switching of resistive random-access memory filaments based on analysis of variations in memory characteristics , 2012 .

[22]  Diana Adler,et al.  Electronic Transport In Mesoscopic Systems , 2016 .

[23]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[24]  Qun Wang,et al.  Effects of the compliance current on the resistive switching behavior of TiO2 thin films , 2009 .

[25]  James C. Ellenbogenand,et al.  Architectures for Molecular Electronic Computers: 1. Logic Structures and an Adder Designed from Molecular Electronic Diodes , 2000 .

[26]  Blaise Mouttet,et al.  Pinched Hysteresis Loops Are a Fingerprint of Square Law Capacitors , 2012 .

[27]  D. Cha,et al.  Effects of electrode material and configuration on the characteristics of planar resistive switching devices , 2013 .

[28]  K. Nagashima,et al.  Unipolar resistive switching characteristics of room temperature grown SnO2 thin films , 2009 .

[29]  T. Tseng,et al.  Forming-free bipolar resistive switching in nonstoichiometric ceria films , 2014, Nanoscale Research Letters.

[30]  Tae Kuk Ko,et al.  Resistive switching characteristics of TiN/MnO2/Pt memory devices , 2010 .

[31]  J. Deen,et al.  Nanoscale memory devices , 2010, Nanotechnology.

[32]  X. Cartoixà,et al.  Transport properties of oxygen vacancy filaments in metal/crystalline or amorphous HfO 2 /metal structures , 2012 .

[33]  Fu-Chien Chiu,et al.  Conduction mechanism of resistive switching films in MgO memory devices , 2012 .

[34]  Byung Joon Choi,et al.  Engineering nonlinearity into memristors for passive crossbar applications , 2012 .

[35]  Sungho Kim,et al.  A Comprehensive Study of the Resistive Switching Mechanism in $\hbox{Al/TiO}_{x}/\hbox{TiO}_{2}/\hbox{Al}$-Structured RRAM , 2009, IEEE Transactions on Electron Devices.

[36]  K. Kinoshita,et al.  Correlation between filament distribution and resistive switching properties in resistive random access memory consisting of binary transition-metal oxides , 2012 .

[37]  S. Balatti,et al.  Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part II: Modeling , 2012, IEEE Transactions on Electron Devices.

[38]  Myoung-Jae Lee,et al.  Modeling for bipolar resistive memory switching in transition-metal oxides , 2010 .

[39]  龙世兵 Quantum-size effects in hafnium-oxide resistive switching , 2013 .

[40]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[41]  M. Nafria,et al.  Point contact conduction at the oxide breakdown of MOS devices , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[42]  Run-Wei Li,et al.  Resistive switching effects in oxide sandwiched structures , 2012, Frontiers of Materials Science.

[43]  Yuchao Yang,et al.  Complementary resistive switching in tantalum oxide-based resistive memory devices , 2012, 1204.3515.

[44]  S. Ha,et al.  Adaptive oxide electronics: A review , 2011 .

[45]  M. Lanza A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope , 2014, Materials.

[46]  D. Wolansky,et al.  Impact of Temperature on the Resistive Switching Behavior of Embedded $\hbox{HfO}_{2}$-Based RRAM Devices , 2011, IEEE Transactions on Electron Devices.

[47]  Run-Wei Li,et al.  Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments , 2011, Nanotechnology.

[48]  Xin Guo,et al.  Roles of Schottky barrier and oxygen vacancies in the electroforming of SrTiO3 , 2012 .

[49]  Jen‐Sue Chen,et al.  Schottky barrier mediated single-polarity resistive switching in Pt layer-included TiO(x) memory device. , 2011, ACS applied materials & interfaces.

[50]  György Cserey,et al.  Macromodeling of the Memristor in SPICE , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[51]  Lifeng Liu,et al.  A Simplified Model for Resistive Switching of Oxide-Based Resistive Random Access Memory Devices , 2012, IEEE Electron Device Letters.

[52]  M. Rozenberg,et al.  Tailoring conductive filaments by electroforming polarity in memristive based TiO2 junctions , 2014 .

[53]  Adnan Mehonic,et al.  Electrically tailored resistance switching in silicon oxide , 2012, Nanotechnology.

[54]  Nagarajan Raghavan,et al.  Performance and reliability trade-offs for high-κ RRAM , 2014, Microelectron. Reliab..

[55]  Yike Guo,et al.  Delayed Switching in Memristors and Memristive Systems , 2010, IEEE Electron Device Letters.

[56]  A. Makarova Stochastic model of the resistive switching mechanism in bipolar resistive random access memory : Monte Carlo simulations , 2011 .

[57]  D. Ielmini,et al.  Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament Growth , 2011, IEEE Transactions on Electron Devices.

[58]  Daniele Ielmini,et al.  Switching of nanosized filaments in NiO by conductive atomic force microscopy , 2012 .

[59]  Multilevel recording in Bi-deficient Pt/BFO/SRO heterostructures based on ferroelectric resistive switching targeting high-density information storage in nonvolatile memories , 2014, 1402.0739.

[60]  Ligang Gao,et al.  The growth of metallic nanofilaments in resistive switching memory devices based on solid electrolytes , 2009 .

[61]  S. O. Park,et al.  Electrical observations of filamentary conductions for the resistive memory switching in NiO films , 2006 .

[62]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[63]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[64]  Ru Huang,et al.  A New Dynamic Selector Based on the Bipolar RRAM for the Crossbar Array Application , 2012, IEEE Transactions on Electron Devices.

[65]  Yusuf Leblebici,et al.  Multiterminal Memristive Nanowire Devices for Logic and Memory Applications: A Review , 2012, Proceedings of the IEEE.

[66]  J. Myoung,et al.  Controllable resistance switching behavior of NiO/SiO2 double layers for nonvolatile memory applications , 2009 .

[67]  Shimeng Yu,et al.  A SPICE Compact Model of Metal Oxide Resistive Switching Memory With Variations , 2012, IEEE Electron Device Letters.

[68]  J. Simmons,et al.  New conduction and reversible memory phenomena in thin insulating films , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[69]  Siddharth Gaba,et al.  Synaptic behaviors and modeling of a metal oxide memristive device , 2011 .

[70]  L. Larcher,et al.  Metal oxide RRAM switching mechanism based on conductive filament microscopic properties , 2010, 2010 International Electron Devices Meeting.

[71]  G. Ghibaudo,et al.  Review on high-k dielectrics reliability issues , 2005, IEEE Transactions on Device and Materials Reliability.

[72]  F. Chiu,et al.  Reliability characteristics and conduction mechanisms in resistive switching memory devices using ZnO thin films , 2012, Nanoscale Research Letters.

[73]  A. J. Kenyon,et al.  Quantum Conductance in Silicon Oxide Resistive Memory Devices , 2013, Scientific Reports.

[74]  Lin Chen,et al.  Device and SPICE modeling of RRAM devices. , 2011, Nanoscale.

[75]  Qi Liu,et al.  Multilevel resistive switching with ionic and metallic filaments , 2009 .

[76]  Uri C. Weiser,et al.  TEAM: ThrEshold Adaptive Memristor Model , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[77]  E. Miranda,et al.  Model for the Resistive Switching Effect in $ \hbox{HfO}_{2}$ MIM Structures Based on the Transmission Properties of Narrow Constrictions , 2010, IEEE Electron Device Letters.

[78]  Jordi Suñé,et al.  Modeling of the switching I-V characteristics in ultrathin (5 nm) atomic layer deposited HfO2 films using the logistic hysteron , 2015 .

[79]  Peng Li,et al.  Dynamical Properties and Design Analysis for Nonvolatile Memristor Memories , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[80]  Run-Wei Li,et al.  Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches , 2010, Nanotechnology.

[81]  S. Ahn,et al.  Effects of a Load Resistor on Conducting Filament Characteristics and Unipolar Resistive Switching Behaviors in a Pt/NiO/Pt Structure , 2012 .

[82]  H. Hwang,et al.  Parallel memristive filaments model applicable to bipolar and filamentary resistive switching , 2011 .

[83]  Shamik Das,et al.  Switching-time analysis of binary-oxide memristors via a nonlinear model , 2012 .

[84]  Sung-Mo Kang,et al.  Compact Models for Memristors Based on Charge-Flux Constitutive Relationships , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[85]  Tseung-Yuen Tseng,et al.  Multilevel resistive switching in Ti/CuxO/Pt memory devices , 2010 .

[86]  Sung In Kim,et al.  Reversible resistive switching behaviors in NiO nanowires , 2008, 2010 3rd International Nanoelectronics Conference (INEC).

[87]  Dalibor Biolek,et al.  SPICE Model of Memristor with Nonlinear Dopant Drift , 2009 .

[88]  T. Hou,et al.  Electrode dependence of filament formation in HfO2 resistive-switching memory , 2011 .

[89]  California,et al.  Field-induced resistive switching in metal-oxide interfaces , 2004, cond-mat/0402687.

[90]  Shinhyun Choi,et al.  Tuning resistive switching characteristics of tantalum oxide memristors through Si doping. , 2014, ACS nano.

[91]  G. Subramanyam,et al.  A Memristor Device Model , 2011, IEEE Electron Device Letters.

[92]  M. Morales‐Masis,et al.  Observing “quantized” conductance steps in silver sulfide: Two parallel resistive switching mechanisms , 2012, 1603.05438.

[93]  An Chen Switching control of resistive switching devices , 2010 .

[94]  Siddharth Gaba,et al.  Nanoscale resistive memory with intrinsic diode characteristics and long endurance , 2010 .

[95]  Wen-Yuan Chang,et al.  Resistive switching characteristics in Pr0.7Ca0.3MnO3 thin films on LaNiO3-electrodized Si substrate , 2009 .

[96]  Jun Yeong Seok,et al.  Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures , 2010, Nanotechnology.

[97]  Xing Wu,et al.  Intrinsic nanofilamentation in resistive switching , 2013 .

[98]  S. Benderli,et al.  On SPICE macromodelling of TiO 2 memristors , 2009 .

[99]  C. Hwang,et al.  The conical shape filament growth model in unipolar resistance switching of TiO2 thin film , 2009 .

[100]  S. Rhee,et al.  Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices , 2009 .

[101]  F. Zeng,et al.  Conductance quantization in oxygen-anion-migration-based resistive switching memory devices , 2013 .

[102]  Sungho Kim,et al.  Comprehensive modeling of resistive switching in the Al/TiOx/TiO2/Al heterostructure based on space-charge-limited conduction , 2010 .

[103]  Byung Joon Choi,et al.  Identification of a determining parameter for resistive switching of TiO2 thin films , 2005 .

[104]  M. Rozenberg,et al.  A mechanism for unipolar resistance switching in oxide nonvolatile memory devices , 2007, 0707.3077.

[105]  R. Cavin,et al.  Scaling limits of resistive memories , 2011, Nanotechnology.

[106]  E. Miranda,et al.  The Quantum Point-Contact Memristor , 2012, IEEE Electron Device Letters.

[107]  Matthew D. Pickett,et al.  SPICE modeling of memristors , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[108]  Sunae Seo,et al.  Observation of electric-field induced Ni filament channels in polycrystalline NiOx film , 2007 .

[109]  HfO2 based memory devices with rectifying capabilities , 2014 .

[110]  L. Chua Memristor-The missing circuit element , 1971 .

[111]  Frederick T. Chen,et al.  Experimental investigation of the reliability issue of RRAM based on high resistance state conduction , 2011, Nanotechnology.

[112]  Peng-Fei Wang,et al.  Controllable Filament With Electric Field Engineering for Resistive Switching Uniformity , 2011, IEEE Electron Device Letters.

[113]  A. Ortiz-Conde,et al.  Exact analytical solutions of the forward non-ideal diode equation with series and shunt parasitic resistances , 2000 .

[114]  C. Hu,et al.  Bistable Resistive Switching in Al2O3 Memory Thin Films , 2007 .

[115]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[116]  B. Mouttet Memresistors and non-memristive zero-crossing hysteresis curves , 2012, 1201.2626.

[117]  Yuchao Yang,et al.  Bipolar resistance switching in high-performance Cu/ZnO:Mn/Pt nonvolatile memories: active region and influence of Joule heating , 2010 .

[118]  Yen-Ting Chen,et al.  Study of polarity effect in SiOx-based resistive switching memory , 2012 .

[119]  Hao Yu,et al.  Analysis and Modeling of Internal State Variables for Dynamic Effects of Nonvolatile Memory Devices , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[120]  H. Gomes,et al.  Resistive switching in nanostructured thin films , 2009 .

[121]  Ming-Jinn Tsai,et al.  Atomic-level quantized reaction of HfOx memristor , 2013 .

[122]  D. Ielmini,et al.  Analysis and modeling of resistive switching statistics , 2012 .

[123]  Tx,et al.  Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface , 2002, cond-mat/0212464.

[124]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[125]  Hiroshi Iwai,et al.  Resistive switching behavior of a CeO2 based ReRAM cell incorporated with Si buffer layer , 2012, Microelectron. Reliab..

[126]  Dongsoo Lee,et al.  Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications , 2006 .

[127]  S. Balatti,et al.  Evidence for Voltage-Driven Set/Reset Processes in Bipolar Switching RRAM , 2012, IEEE Transactions on Electron Devices.

[128]  Stephen J. Wolf,et al.  The elusive memristor: properties of basic electrical circuits , 2008, 0807.3994.

[129]  Chengqing Hu,et al.  Highly controllable and stable quantized conductance and resistive switching mechanism in single-crystal TiO2 resistive memory on silicon. , 2014, Nano letters.

[130]  E. Miranda,et al.  Equivalent circuit model for the switching conduction characteristics of TiO2-based MIM structures , 2014, 2014 29th International Conference on Microelectronics Proceedings - MIEL 2014.

[131]  R. Dittmann,et al.  Detection of filament formation in forming-free resistive switching SrTiO3 devices with Ti top electrodes , 2012 .

[132]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[133]  J. Yang,et al.  A Family of Electronically Reconfigurable Nanodevices , 2009 .

[134]  Saptarshi Mandal,et al.  Switching dynamics and charge transport studies of resistive random access memory devices , 2012 .

[135]  D. Wolansky,et al.  Pulse-induced low-power resistive switching in HfO2 metal-insulator-metal diodes for nonvolatile memory applications , 2009 .

[136]  J. Yang,et al.  Electrical transport and thermometry of electroformed titanium dioxide memristive switches , 2009 .

[137]  J. Simmons Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film , 1963 .

[138]  D. Jeong,et al.  Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook , 2011, Nanotechnology.

[139]  D. Bremaud,et al.  Electrical current distribution across a metal–insulator–metal structure during bistable switching , 2001, cond-mat/0104452.

[140]  Haiyang Peng,et al.  Nonvolatile resistive switching in spinel ZnMn2O4 and ilmenite ZnMnO3 , 2009 .

[141]  N. Xu,et al.  Resistive Switching in $\hbox{CeO}_{x}$ Films for Nonvolatile Memory Application , 2009, IEEE Electron Device Letters.

[142]  E. Yu,et al.  High ON/OFF Ratio and Quantized Conductance in Resistive Switching of ${\rm TiO}_{2}$ on Silicon , 2013, IEEE Electron Device Letters.

[143]  X. A. Tran,et al.  Oxide-based RRAM: Unified microscopic principle for both unipolar and bipolar switching , 2011, 2011 International Electron Devices Meeting.

[144]  R. Yimnirun,et al.  Hysteresis Scaling by Defined Hysteron Pattern in Preisach Model , 2012 .

[145]  M. Sasaki An electron conduction model of resistive memory for resistance dispersion, fluctuation, filament structures, and Set/Reset mechanism , 2012 .

[146]  Matthew D. Pickett,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[147]  Ru Huang,et al.  Unipolar Resistive Switch Based on Silicon Monoxide Realized by CMOS Technology , 2009, IEEE Electron Device Letters.

[148]  B. Kang,et al.  Stabilizing the forming process in unipolar resistance switching using an improved compliance current limiter , 2010, 1006.5132.

[149]  B. Park,et al.  Resistive switching behaviors of NiO films with controlled number of conducting filaments , 2011 .

[150]  X. D. Gao,et al.  Stable bipolar resistance switching behaviour induced by a soft breakdown process at the Al/La0.7Ca0.3MnO3 interface , 2009 .

[151]  D. Strukov,et al.  Thermal Modeling of Resistive Switching Devices , 2013, IEEE Transactions on Electron Devices.

[152]  Tuo-Hung Hou,et al.  Transition of stable rectification to resistive-switching in Ti/TiO2/Pt oxide diode , 2010 .

[153]  Nagarajan Raghavan,et al.  Uncorrelated multiple conductive filament nucleation and rupture in ultra-thin high-κ dielectric based resistive random access memory , 2011 .

[154]  Byung-Gook Park,et al.  Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices , 2012 .

[155]  Jordi Suñé,et al.  Electron transport through broken down ultra-thin SiO2 layers in MOS devices , 2004, Microelectron. Reliab..

[156]  Shimeng Yu,et al.  Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM) , 2011, IEEE Transactions on Electron Devices.

[157]  황철성,et al.  Nanofilamentary resistive switching in binary oxide system , 2011 .

[158]  A. Sawa,et al.  Modeling of hysteretic Schottky diode-like conduction in Pt/BiFeO3/SrRuO3 switches , 2014 .

[159]  J. Yang,et al.  Switching dynamics in titanium dioxide memristive devices , 2009 .

[160]  R. Waser,et al.  Mechanism for bipolar switching in a Pt / TiO 2 / Pt resistive switching cell , 2009 .

[161]  J. Yang,et al.  High switching endurance in TaOx memristive devices , 2010 .

[162]  Byung Joon Choi,et al.  Influence of carrier injection on resistive switching of TiO2 thin films with Pt electrodes , 2006 .

[163]  Helen Grampeix,et al.  Resistance switching in HfO2 metal-insulator-metal devices , 2010 .

[164]  L. Goux,et al.  Insights into Ni-filament formation in unipolar-switching Ni/HfO2/TiN resistive random access memory device , 2012 .

[165]  M. Haemori,et al.  Impact of Cu Electrode on Switching Behavior in a Cu/HfO2/Pt Structure and Resultant Cu Ion Diffusion , 2009 .

[166]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[167]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[168]  Yiwei Liu,et al.  Observation of Conductance Quantization in Oxide‐Based Resistive Switching Memory , 2012, Advanced materials.

[169]  Tupei Chen,et al.  Conduction mechanisms at low- and high-resistance states in aluminum/anodic aluminum oxide/aluminum thin film structure , 2012 .

[170]  S. Balatti,et al.  Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part I: Experimental Study , 2012, IEEE Transactions on Electron Devices.

[171]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[172]  Shimeng Yu,et al.  Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model , 2011 .

[173]  Derek Abbott,et al.  Memristive Device Fundamentals and Modeling: Applications to Circuits and Systems Simulation , 2012, Proceedings of the IEEE.

[174]  U. Chung,et al.  Modeling for multilevel switching in oxide-based bipolar resistive memory , 2012, Nanotechnology.

[175]  Liu Su,et al.  Simulation study of conductive filament growth dynamics in oxide-electrolyte-based ReRAM , 2014 .

[176]  F. Zeng,et al.  Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. , 2009, Nano letters.

[177]  Enrique Miranda,et al.  Modeling of the Hysteretic $I{-}V$ Characteristics of ${\rm TiO}_{2}$-Based Resistive Switches Using the Generalized Diode Equation , 2014, IEEE Electron Device Letters.