A Nitsche‐type formulation and comparison of the most common domain decomposition methods in isogeometric analysis

This paper provides a detailed elaboration and assessment of the most common domain decomposition methods for their application in isogeometric analysis. The methods comprise a penalty approach, Lagrange multiplier methods, and a Nitsche-type method. For the Nitsche method, a new stabilized formulation is developed in the context of isogeometric analysis to guarantee coercivity. All these methods are investigated on problems of linear elasticity and eigenfrequency analysis in 2D. In particular, focus is put on non-uniform rational B-spline patches which join nonconformingly along their common interface. Thus, the application of isogeometric analysis is extended to multi-patches, which can have an arbitrary parametrization on the adjacent edges. Moreover, it has been shown that the unique properties provided by isogeometric analysis, that is, high-order functions and smoothness across the element boundaries, carry over for the analysis of multiple domains. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  Peter Betsch,et al.  Isogeometric analysis and domain decomposition methods , 2012 .

[2]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[3]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[4]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[5]  Peter Wriggers,et al.  A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method , 2012 .

[6]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[7]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[8]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[9]  Roland Wüchner,et al.  Isogeometric analysis of trimmed NURBS geometries , 2012 .

[10]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[11]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[12]  F. Brezzi,et al.  A discourse on the stability conditions for mixed finite element formulations , 1990 .

[13]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[14]  Carlos A. Felippa,et al.  A Classification of Interface Treatments for FSI , 2011 .

[15]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[16]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[17]  Robert Schmidt,et al.  Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis , 2010, Comput. Vis. Sci..

[18]  Alfio Quarteroni,et al.  A domain decomposition framework for fluid-structure interaction problems , 2006 .

[19]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[20]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[21]  J. C. Simo,et al.  A perturbed Lagrangian formulation for the finite element solution of contact problems , 1985 .

[22]  Yuri Bazilevs,et al.  Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment , 2014 .

[23]  Tod A. Laursen,et al.  On methods for stabilizing constraints over enriched interfaces in elasticity , 2009 .

[24]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[25]  Yuri Bazilevs,et al.  Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS , 2012 .

[26]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[27]  B. Wohlmuth,et al.  A comparison of mortar and Nitsche techniques for linear elasticity , 2004 .

[28]  Yuri Bazilevs,et al.  Free-Surface Flow and Fluid-Object Interaction Modeling With Emphasis on Ship Hydrodynamics , 2012 .

[29]  I. Babuska The Finite Element Method with Penalty , 1973 .

[30]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[31]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012 .

[32]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[33]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[34]  R. Unger,et al.  Application of Lagrange multipliers for coupled problems in fluid and structural interactions , 2007 .

[35]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[36]  J. Haslinger,et al.  On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction , 2002 .