Rare‐Earth Ion Doped Up‐Conversion Materials for Photovoltaic Applications

With the aim of utilizing the infrared region of solar radiation to improve solar cell performance, significant progress, including theoretical analysis and experimental achievement, has been made in the field of up‐conversion for photovoltaic applications. This Research News article reviews recent progress in the development of rear‐earth (RE) ion doped up‐conversion materials for solar cell applications. In addition, new trends for RE‐ion‐doped phosphors are briefly discussed, among them trivalent RE‐ion‐doped up‐conversion materials for organic solar cell applications.

[1]  W.G.J.H.M. van Sark,et al.  Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors , 2010 .

[2]  G. Demopoulos,et al.  Near‐Infrared Sunlight Harvesting in Dye‐Sensitized Solar Cells Via the Insertion of an Upconverter‐TiO2 Nanocomposite Layer , 2010, Advanced materials.

[3]  T. Nann,et al.  Size and shape evolution of upconverting nanoparticles using microwave assisted synthesis , 2010 .

[4]  Xiaoyong Huang,et al.  Recent progress in quantum cutting phosphors , 2010 .

[5]  Jan Gilot,et al.  Optimizing Polymer Tandem Solar Cells , 2010, Advanced materials.

[6]  Christoph J. Brabec,et al.  Near IR Sensitization of Organic Bulk Heterojunction Solar Cells: Towards Optimization of the Spectral Response of Organic Solar Cells , 2010 .

[7]  D. Ginley,et al.  Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. , 2010, Nano letters.

[8]  J. Bünzli,et al.  Lanthanide luminescence for functional materials and bio-sciences. , 2010, Chemical Society reviews.

[9]  T. Nann,et al.  Monodisperse upconverting nanocrystals by microwave-assisted synthesis. , 2009, ACS nano.

[10]  S. Ivanova,et al.  Strong 1.53 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells , 2009 .

[11]  B. Richards,et al.  Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review , 2009 .

[12]  Christoph J. Brabec,et al.  Organic tandem solar cells: A review , 2009 .

[13]  Xiaogang Liu,et al.  Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. , 2009, Chemical Society reviews.

[14]  X. Y. Huang,et al.  Gd2(MoO4)3:Er3+ Nanophosphors for an Enhancement of Silicon Solar-Cell Near-Infrared Response , 2009, Journal of Fluorescence.

[15]  V. Badescu An extended model for upconversion in solar cells , 2008 .

[16]  S. Glunz,et al.  Neodymium‐doped fluorochlorozirconate glasses as an upconversion model system for high efficiency solar cells , 2008 .

[17]  Thuc‐Quyen Nguyen,et al.  Small molecule sensitizers for near-infrared absorption in polymer bulk heterojunction solar cells , 2008 .

[18]  B. de Boer,et al.  Device operation of organic tandem solar cells , 2008 .

[19]  Martijn Lenes,et al.  Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years) , 2008 .

[20]  M. Peters,et al.  Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies , 2008, 2008 Conference on Optoelectronic and Microelectronic Materials and Devices.

[21]  Paul W. M. Blom,et al.  Organic Tandem and Multi‐Junction Solar Cells , 2008 .

[22]  Thomas Nann,et al.  A four-color colloidal multiplexing nanoparticle system. , 2008, ACS nano.

[23]  P. Blom,et al.  Solution-processed organic tandem solar cells with embedded optical spacers , 2007 .

[24]  M. McCann,et al.  Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials , 2007 .

[25]  M. Green,et al.  Efficiency enhancement of solar cells by luminescent up-conversion of sunlight , 2006 .

[26]  Mm Martijn Wienk,et al.  Solution‐Processed Organic Tandem Solar Cells , 2006 .

[27]  M. Green,et al.  Luminescent layers for enhanced silicon solar cell performance: Up-conversion , 2006 .

[28]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[29]  A. Shalav,et al.  Application of NaYF 4 : Er 3 + up-converting phosphors for enhanced near-infrared silicon solar cell response , 2005 .

[30]  David R. Mills,et al.  Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review , 2004 .

[31]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[32]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[33]  M. Green,et al.  Improving solar cell efficiencies by up-conversion of sub-band-gap light , 2002 .

[34]  M. Green,et al.  Improving solar cell efficiencies by down-conversion of high-energy photons , 2002 .

[35]  A. Meijerink,et al.  Visible quantum cutting in LiGdF4:Eu3+ through downconversion , 1999, Science.

[36]  P. Gibart,et al.  Below Band-Gap IR Response of Substrate-Free GaAs Solar Cells Using Two-Photon Up-Conversion , 1996 .

[37]  Martin A. Green,et al.  Efficiency improvements of silicon solar cells by the impurity photovoltaic effect , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[38]  Keith W. J. Barnham,et al.  A new approach to high‐efficiency multi‐band‐gap solar cells , 1990 .

[39]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[40]  M. Wolf,et al.  Limitations and Possibilities for Improvement of Photovoltaic Solar Energy Converters: Part I: Considerations for Earth's Surface Operation , 1960, Proceedings of the IRE.

[41]  N. Bloembergen,et al.  Solid State Infrared Quantum Counters , 1959 .