A Multi-Channel Method for Retrieving Surface Temperature for High-Emissivity Surfaces from Hyperspectral Thermal Infrared Images

The surface temperature (ST) of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR) images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE) of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800–1200 cm−1 and a spectral sampling frequency of 0.25 cm−1. We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE) of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product.

[1]  Lihang Zhou,et al.  AIRS near-real-time products and algorithms in support of operational numerical weather prediction , 2003, IEEE Trans. Geosci. Remote. Sens..

[2]  Filipe Aires,et al.  Remote sensing from the infrared atmospheric sounding interferometer instrument 1. Compression, denoising, and first-guess retrieval algorithms , 2002 .

[3]  Zhengming Wan,et al.  Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm. , 2002, Applied optics.

[4]  Xinhong Wang,et al.  An atmospheric correction method for remotely sensed hyperspectral thermal infrared data , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[5]  H. Bloom,et al.  The Cross-track Infrared Sounder (CrIS): a sensor for operational meteorological remote sensing , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[6]  Alain Chedin,et al.  Infrared Continental Surface Emissivity Spectra Retrieved from AIRS Hyperspectral Sensor , 2008 .

[7]  A. Chedin,et al.  A Single-Channel, Double-Viewing Angle Method for Sea Surface Temperature Determination from Coincident METEOSAT and TIROS-N Radiometric Measurements , 1982 .

[8]  Daniel K. Zhou,et al.  Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances , 2007 .

[9]  Jun Li,et al.  Thermodynamic product retrieval methodology and validation for NAST-I. , 2002, Applied optics.

[10]  Zhao-Liang Li,et al.  A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data , 1997, IEEE Trans. Geosci. Remote. Sens..

[11]  M. Goldberg,et al.  Retrieval of atmospheric temperature and water vapour from IASI measurements in partly cloudy situations , 2002 .

[12]  Enric Valor,et al.  An Atmospheric Radiosounding Database for Generating Land Surface Temperature Algorithms , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[13]  A. Chedin,et al.  The Improved Initialization Inversion Method: A High Resolution Physical Method for Temperature Retrievals from Satellites of the TIROS-N Series. , 1985 .

[14]  A. Chedin,et al.  A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas , 1981 .

[15]  Bo-Hui Tang,et al.  Retrieval of atmospheric and land surface parameters from satellite-based thermal infrared hyperspectral data using a neural network technique , 2013 .

[16]  Alain Chedin,et al.  A Neural Network Approach for a Fast and Accurate Computation of a Longwave Radiative Budget , 1998 .

[17]  Guido Masiello,et al.  Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances. , 2013, Applied optics.

[18]  Timothy J. Schmit,et al.  Land surface emissivity from high temporal resolution geostationary infrared imager radiances: Methodology and simulation studies , 2011 .

[19]  Rachel T. Pinker,et al.  Retrieval of surface temperature from the MSG‐SEVIRI observations: Part I. Methodology , 2007 .

[20]  Larry M. McMillin,et al.  Estimation of sea surface temperatures from two infrared window measurements with different absorption , 1975 .

[21]  Hal Bloom The Cross-Track Infrared Sounder (CrIS): A sensor for operational meterological remote sensing , 2001 .

[22]  A. Marsouin,et al.  OPERATIONAL SST RETRIEVAL FROM METOP/AVHRR , 2007 .

[23]  Moustafa T. Chahine,et al.  Improving Global Analysis and Forecasting with AIRS , 2006 .

[24]  Juan C. Jiménez-Muñoz,et al.  Land surface temperature retrieval from thermal infrared data: An assessment in the context of the Surface Processes and Ecosystem Changes Through Response Analysis (SPECTRA) mission , 2005 .

[25]  Filipe Aires,et al.  An innovative physical scheme to retrieve simultaneously surface temperature and emissivities using high spectral infrared observations from IASI , 2012 .

[26]  Hideyuki Tonooka,et al.  Accurate atmospheric correction of ASTER thermal infrared imagery using the WVS method , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[27]  I. D. Feis,et al.  Kalman filter physical retrieval of surface emissivity and temperature from geostationary infrared radiances , 2013 .

[28]  Zhao-Liang Li,et al.  Impact of the atmospheric transmittance and total water vapor content in the algorithms for estimating satellite sea surface temperatures , 1993, IEEE Trans. Geosci. Remote. Sens..

[29]  P. S. Kealy,et al.  A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies , 1992 .

[30]  Filipe Aires,et al.  A Regularized Neural Net Approach for Retrieval of Atmospheric and Surface Temperatures with the Iasi Instrument , 2013 .

[31]  Alan R. Gillespie,et al.  Residual errors in ASTER temperature and emissivity standard products AST08 and AST05 , 2011 .

[32]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[33]  R. T. Pinker,et al.  Implementation of GOES‐based land surface temperature diurnal cycle to AVHRR , 2005 .

[34]  Xu Liu,et al.  Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Christopher D. Barnet,et al.  Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds , 2003, IEEE Trans. Geosci. Remote. Sens..

[36]  Eva Borbas,et al.  International MODIS and AIRS processing package: AIRS products and applications , 2007 .

[37]  Christopher D. Barnet,et al.  Hyperspectral Earth Observation from IASI: Five Years of Accomplishments , 2012 .

[38]  Donglian Sun,et al.  Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES‐8) , 2003 .

[39]  H. Fischer,et al.  Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends , 2002 .

[40]  Y Zhang,et al.  Retrieval of geophysical parameters from moderate resolution imaging spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm. , 2000, Applied optics.

[41]  José A. Sobrino,et al.  Satellite-derived land surface temperature: Current status and perspectives , 2013 .

[42]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[43]  Zhao-Liang Li,et al.  Radiance‐based validation of the V5 MODIS land‐surface temperature product , 2008 .