Randomized interpolative decomposition of separated representations
暂无分享,去创建一个
Gregory Beylkin | David J. Biagioni | David J. Biagioni | Daniel J. Beylkin | G. Beylkin | Daniel J. Beylkin
[1] Martin J. Mohlenkamp,et al. Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[2] R. Bro. PARAFAC. Tutorial and applications , 1997 .
[3] Reinhold Schneider,et al. Low rank tensor recovery via iterative hard thresholding , 2016, ArXiv.
[4] Petros Drineas,et al. Pass efficient algorithms for approximating large matrices , 2003, SODA '03.
[5] Santosh S. Vempala,et al. Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.
[6] J. Ballani,et al. Black box approximation of tensors in hierarchical Tucker format , 2013 .
[7] S. Goreinov,et al. A Theory of Pseudoskeleton Approximations , 1997 .
[8] Rasmus Bro,et al. A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..
[9] Santosh S. Vempala,et al. Tensor decomposition and approximation schemes for constraint satisfaction problems , 2005, STOC '05.
[10] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[11] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[12] C. Chui,et al. Article in Press Applied and Computational Harmonic Analysis a Randomized Algorithm for the Decomposition of Matrices , 2022 .
[13] Martin J. Mohlenkamp,et al. Preliminary results on approximating a wavefunction as an unconstrained sum of Slater determinants , 2007 .
[14] Gregory Beylkin,et al. On Generalized Gaussian Quadratures for Exponentials and Their Applications , 2002 .
[15] V. Rokhlin,et al. A randomized algorithm for the approximation of matrices , 2006 .
[16] Severnyi Kavkaz. Pseudo-Skeleton Approximations by Matrices of Maximal Volume , 2022 .
[17] Trac D. Tran,et al. Tensor sparsification via a bound on the spectral norm of random tensors , 2010, ArXiv.
[18] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[19] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[20] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[21] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[22] Petros Drineas,et al. Tensor-CUR decompositions for tensor-based data , 2006, KDD '06.
[23] Michael W. Mahoney,et al. A randomized algorithm for a tensor-based generalization of the singular value decomposition , 2007 .
[24] Bülent Yener,et al. Unsupervised Multiway Data Analysis: A Literature Survey , 2009, IEEE Transactions on Knowledge and Data Engineering.
[25] Robert J. Harrison,et al. MULTIRESOLUTION REPRESENTATION OF OPERATORS WITH BOUNDARY CONDITIONS ON SIMPLE DOMAINS , 2012 .
[26] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.
[27] Dimitris Achlioptas,et al. Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..
[28] G. Schulz. Iterative Berechung der reziproken Matrix , 1933 .
[29] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[30] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[31] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[32] Per-Gunnar Martinsson,et al. Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.
[33] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[34] Eugene E. Tyrtyshnikov,et al. Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.
[35] Bernard Chazelle,et al. Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform , 2006, STOC '06.
[36] Per-Gunnar Martinsson,et al. On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..
[37] V. Prasolov. Problems and theorems in linear algebra , 1994 .
[38] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[39] E. Tyrtyshnikov. Mosaic-Skeleton approximations , 1996 .
[40] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[41] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[42] David J. Biagioni,et al. Numerical construction of Green's functions in high dimensional elliptic problems with variable coefficients and analysis of renewable energy data via sparse and separable approximations , 2012 .
[43] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[44] G. Beylkin,et al. On the representation of operators in bases of compactly supported wavelets , 1992 .
[45] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[46] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[47] Martin J. Mohlenkamp. Musings on multilinear fitting , 2013 .
[48] VandewalleJoos,et al. On the Best Rank-1 and Rank-(R1,R2,. . .,RN) Approximation of Higher-Order Tensors , 2000 .
[49] Charalampos E. Tsourakakis. MACH: Fast Randomized Tensor Decompositions , 2009, SDM.
[50] Wolfgang Dahmen,et al. Wavelets in Numerical Analysis , 2005 .
[51] James Demmel. Accurate Singular Value Decompositions of Structured Matrices , 2000, SIAM J. Matrix Anal. Appl..
[52] Dimitris Achlioptas,et al. Fast computation of low rank matrix approximations , 2001, STOC '01.
[53] Martin J. Mohlenkamp,et al. Multivariate Regression and Machine Learning with Sums of Separable Functions , 2009, SIAM J. Sci. Comput..
[54] Mark Rudelson,et al. Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.
[55] G. Beylkin,et al. On approximation of functions by exponential sums , 2005 .
[56] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[57] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[58] V. Rokhlin,et al. A fast randomized algorithm for the approximation of matrices ✩ , 2007 .
[59] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[60] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[61] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[62] Tamara G. Kolda,et al. Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..
[63] E. Tyrtyshnikov,et al. TT-cross approximation for multidimensional arrays , 2010 .