Improving MCMC Using Efficient Importance Sampling

A generic Markov Chain Monte Carlo (MCMC) framework, based upon Efficient Importance Sampling (EIS) is developed, which can be used for the analysis of a wide range of econometric models involving integrals without analytical solution. EIS is a simple, generic and yet accurate Monte-Carlo integration procedure based on sampling densities which are global approximations to the integrand. By embedding EIS within MCMC procedures based on Metropolis-Hastings (MH) one can significantly improve their numerical properties, essentially by providing a fully automated selection of critical MCMC components, such as auxiliary sampling densities, normalizing constants and starting values. The potential of this integrated MCMC-EIS approach is illustrated with simple univariate integration problems, and with the Bayesian posterior analysis of stochastic volatility models and stationary autoregressive processes.

[1]  L. Bauwens,et al.  EIS for the estimation of SCD models , 2005 .

[2]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[3]  D. V. Lindley New developments in the application of Bayesian methods: Ahmet AYKAÇ and Carlo BRUMAT (editors) North-Holland, Amsterdam, 1977. xxiv + 385 pages, US $ 44.50, Dfl. 100.00 , 1979 .

[4]  Roman Liesenfeld,et al.  Estimating time series models for count data using efficient importance sampling , 2001 .

[5]  Luc Bauwens,et al.  Stochastic Conditional Intensity Processes , 2006 .

[6]  Robert Fildes,et al.  Journal of business and economic statistics 5: Garcia-Ferrer, A. et al., Macroeconomic forecasting using pooled international data, (1987), 53-67 , 1988 .

[7]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[8]  J. Richard,et al.  Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models , 2006 .

[9]  Eric Ghysels,et al.  Editors' Introduction to Twentieth Anniversary Commemorative Issue of the Journal of Business and Economic Statistics , 2002 .

[10]  John Geweke,et al.  Federal Reserve Bank of Minneapolis Research Department Staff Report 249 Using Simulation Methods for Bayesian Econometric Models: Inference, Development, and Communication , 2022 .

[11]  Jean-Francois Richard,et al.  Simulation Techniques for Panels: Efficient Importance Sampling , 2008 .

[12]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[13]  G. W. Snedecor Statistical Methods , 1964 .

[14]  N. Shephard Stochastic Volatility: Selected Readings , 2005 .

[15]  S. Chib,et al.  Bayes inference in regression models with ARMA (p, q) errors , 1994 .

[16]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[17]  Nizar Touzi,et al.  Numerical Methods in Finance: Monte Carlo Methods for Stochastic Volatility Models , 1997 .

[18]  T. Kloek,et al.  Bayesian estimates of equation system parameters, An application of integration by Monte Carlo , 1976 .

[19]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[20]  J. Richard,et al.  Univariate and Multivariate Stochastic Volatility Models: Estimation and Diagnostics , 2003 .

[21]  N. Shephard,et al.  Markov chain Monte Carlo methods for stochastic volatility models , 2002 .

[22]  J. Richard Bayesian analysis of the regression model when the disturbances are generated by an autoregressive process , 1977 .

[23]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[24]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[25]  J. Richard,et al.  Efficient high-dimensional importance sampling , 2007 .

[26]  Patrick Sevestre,et al.  The Econometrics of Panel Data , 1993 .

[27]  Steven Stern,et al.  Simulation-based estimation , 1997 .

[28]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[29]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[30]  M. Pitt,et al.  Likelihood analysis of non-Gaussian measurement time series , 1997 .

[31]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[32]  Siem Jan Koopman,et al.  Testing the Assumptions Behind the use of Importance Sampling , 2002 .

[33]  Jean-Francois Richard,et al.  Estimation of Dynamic Bivariate Mixture Models , 2003 .

[34]  Christian Gourieroux,et al.  Simulation-based econometric methods , 1996 .

[35]  Luc Bauwens,et al.  Dynamic Latent Factor Models for Intensity Processes , 2004 .

[36]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[37]  A. Harvey,et al.  5 Stochastic volatility , 1996 .