SN 2008ha: AN EXTREMELY LOW LUMINOSITY AND EXCEPTIONALLY LOW ENERGY SUPERNOVA

We present ultraviolet, optical, and near-infrared photometry as well as optical spectra of the peculiar supernova (SN) 2008ha. SN 2008ha had a very low peak luminosity, reaching only MV = −14.2 mag, and low line velocities of only ∼2000 km s−1 near maximum brightness, indicating a very small kinetic energy per unit mass of ejecta. Spectroscopically, SN 2008ha is a member of the SN 2002cx-like class of SNe, a peculiar subclass of SNe Ia; however, SN 2008ha is the most extreme member, being significantly fainter and having lower line velocities than the typical member, which is already ∼2 mag fainter and has line velocities ∼5000 km s−1 smaller (near maximum brightness) than a normal SN Ia. SN 2008ha had a remarkably short rise time of only ∼10 days, significantly shorter than either SN 2002cx-like objects (∼15 days) or normal SNe Ia (∼19.5 days). The bolometric light curve of SN 2008ha indicates that SN 2008ha peaked at Lpeak = (9.5 ± 1.4) × 1040 erg s−1, making SN 2008ha perhaps the least luminous SN ever observed. From its peak luminosity and rise time, we infer that SN 2008ha generated (3.0 ± 0.9) × 10−3M☉ of 56Ni, had a kinetic energy of ∼2 × 1048 erg, and ejected 0.15 M☉ of material. The host galaxy of SN 2008ha has a luminosity, star formation rate, and metallicity similar to those of the Large magellanic Cloud. We classify three new (and one potential) members of the SN 2002cx-like class, expanding the sample to 14 (and one potential) members. The host-galaxy morphology distribution of the class is consistent with that of SNe Ia, Ib, Ic, and II. Several models for generating low-luminosity SNe can explain the observations of SN 2008ha; however, if a single model is to describe all SN 2002cx-like objects, deflagration of carbon–oxygen white dwarfs, with SN 2008ha being a partial deflagration and not unbinding the progenitor star, is preferred. The rate of SN 2008ha-like events is ∼10% of the SN Ia rate, and in the upcoming era of transient surveys, several thousand similar objects may be discovered, suggesting that SN 2008ha may be the tip of a low-luminosity transient iceberg.

[1]  John A. Nousek,et al.  ULTRAVIOLET LIGHT CURVES OF SUPERNOVAE WITH THE SWIFT ULTRAVIOLET/OPTICAL TELESCOPE , 2009 .

[2]  A. Pastorello,et al.  A low-energy core-collapse supernova without a hydrogen envelope , 2009, Nature.

[3]  S. Smartt,et al.  SN 2005cs in M51 – II. Complete evolution in the optical and the near-infrared , 2009, 0901.2075.

[4]  R. Chornock,et al.  SN 2008S: A COOL SUPER-EDDINGTON WIND IN A SUPERNOVA IMPOSTOR , 2008, 0811.3929.

[5]  Caltech,et al.  THE GOLDEN STANDARD TYPE Ia SUPERNOVA 2005cf: OBSERVATIONS FROM THE ULTRAVIOLET TO THE NEAR-INFRARED WAVEBANDS , 2008, 0811.1205.

[6]  Warren R. Brown,et al.  FROM SHOCK BREAKOUT TO PEAK AND BEYOND: EXTENSIVE PANCHROMATIC OBSERVATIONS OF THE TYPE Ib SUPERNOVA 2008D ASSOCIATED WITH SWIFT X-RAY TRANSIENT 080109 , 2008, 0805.2201.

[7]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[8]  Psu,et al.  SN 2007ax: An Extremely Faint Type Ia Supernova , 2008, 0807.0660.

[9]  Linda J. Smith,et al.  SPITZER SAGE SURVEY OF THE LARGE MAGELLANIC CLOUD. III. STAR FORMATION AND ∼1000 NEW CANDIDATE YOUNG STELLAR OBJECTS , 2008 .

[10]  D. Berk,et al.  Ultraviolet Light Curves of Supernovae with Swift Uvot , 2008, 0803.1265.

[11]  Armin Rest,et al.  Type Ia Supernovae Are Good Standard Candles in the Near Infrared: Evidence from PAIRITEL , 2007, 0711.2068.

[12]  P. Mazzali,et al.  The Evolution of the Peculiar Type Ia Supernova SN 2005hk over 400 Days , 2007, 0710.3636.

[13]  Princeton,et al.  MEASURED METALLICITIES AT THE SITES OF NEARBY BROAD-LINED TYPE IC SUPERNOVAE AND IMPLICATIONS FOR THE SN-GRB CONNECTION , 2007 .

[14]  R. Kirshner,et al.  Long γ-Ray Bursts and Type Ic Core-Collapse Supernovae Have Similar Locations in Hosts , 2007, 0712.0430.

[15]  J. Hughes,et al.  Chandra Observations of Type Ia Supernovae: Upper Limits to the X-Ray Flux of SN 2002bo, SN 2002ic, SN 2005gj, and SN 2005ke , 2007, 0710.3190.

[16]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[17]  L. Antonelli,et al.  The multicolored landscape of compact objects and their explosive Origins : Cefalù 2006 : Cefalù, Sicily, 11-18 and 19-24 June 2006 , 2007 .

[18]  Gijs Nelemans,et al.  Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries , 2007, astro-ph/0703578.

[19]  S. E. Persson,et al.  The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode as Deflagrations? , 2006, astro-ph/0611295.

[20]  R. Chevalier,et al.  Circumstellar Emission from Type Ib and Ic Supernovae , 2006, astro-ph/0607196.

[21]  R. Kotak,et al.  SN 2004aw: confirming diversity of Type Ic supernovae , 2006, astro-ph/0607078.

[22]  M. Principe,et al.  SN 2005cs in M51 – I. The first month of evolution of a subluminous SN II plateau , 2006, astro-ph/0605700.

[23]  Tokyo,et al.  The properties of the 'standard' type Ic supernova 1994I from spectral models , 2006, astro-ph/0604293.

[24]  S. Jha,et al.  Spectropolarimetry of the Peculiar Type Ia Supernova 2005hk , 2006, astro-ph/0603083.

[25]  S. Smartt,et al.  Faint supernovae and supernova impostors: case studies of SN 2002kg/NGC 2403-V37 and SN 2003gm , 2006, astro-ph/0603056.

[26]  S. Jha,et al.  Late-Time Spectroscopy of SN 2002cx: The Prototype of a New Subclass of Type Ia Supernovae , 2006, astro-ph/0602250.

[27]  C. Ott,et al.  Multidimensional Simulations of the Accretion-induced Collapse of White Dwarfs to Neutron Stars , 2006, astro-ph/0601603.

[28]  F. Kitaura,et al.  Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae , 2005, astro-ph/0512065.

[29]  M. Pinsonneault,et al.  The Solar Heavy-Element Abundances. I. Constraints from Stellar Interiors , 2005, astro-ph/0511779.

[30]  J. Bloom,et al.  The Calibration of the Swift UVOT Optical Observations: A Recipe for Photometry , 2005, astro-ph/0505504.

[31]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[32]  W. M. Wood-Vasey,et al.  Using Line Profiles to Test the Fraternity of Type Ia Supernovae at High and Low Redshifts , 2005, astro-ph/0510089.

[33]  Thomas G. Barnes,et al.  Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert , 2005 .

[34]  M. Reinecke,et al.  Three-dimensional modeling of type Ia supernovae - The power of late time spectra , 2005, astro-ph/0504317.

[35]  E. Livne,et al.  On the Sensitivity of Deflagrations in Chandrasekhar Mass White Dwarf to Initial Conditions , 2005, astro-ph/0504299.

[36]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[37]  R. Thomas,et al.  Reading the Spectra of the Most Peculiar Type Ia Supernova 2002cx , 2004, astro-ph/0408130.

[38]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[39]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[40]  M. Turatto,et al.  Low‐luminosity Type II supernovae: spectroscopic and photometric evolution , 2003, astro-ph/0309264.

[41]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[42]  Weidong Li,et al.  On the Progenitor of the Type II‐Plateau Supernova 2003gd in M74 , 2003, astro-ph/0307226.

[43]  R. Foley,et al.  Optical Photometry and Spectroscopy of the SN 1998bw–like Type Ic Supernova 2002ap , 2003, astro-ph/0307136.

[44]  Wm. A. Wheaton,et al.  Spectral Irradiance Calibration in the Infrared. XIV. The Absolute Calibration of 2MASS , 2003, astro-ph/0304350.

[45]  D. Kelson Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.

[46]  Caltech,et al.  SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.

[47]  Chris L. Fryer,et al.  How Massive Single Stars End Their Life , 2002, astro-ph/0212469.

[48]  Klaus W. Hodapp,et al.  The Gemini Near‐Infrared Imager (NIRI) , 2000, Astronomical Telescopes and Instrumentation.

[49]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[50]  Chris L. Fryer Mass Limits For Black Hole Formation , 1999, astro-ph/9902315.

[51]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[52]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[53]  D. Fabricant,et al.  The FAST Spectrograph for the Tillinghast Telescope , 1998 .

[54]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[55]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[56]  P. Nugent,et al.  Evidence for a High-Velocity Carbon-rich Layer in the Type Ia SN 1990N , 1997 .

[57]  P. Pinto,et al.  The Physics of Type Ia Supernova Light Curves. II. Opacity and Diffusion , 1996, astro-ph/9611195.

[58]  R. Kron,et al.  Photoelectric Photometry of Zwicky Galaxies , 1995 .

[59]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[60]  P. Massey,et al.  Massive stars in the field and associations of the magellanic clouds: The upper mass limit, the initial mass function, and a critical test of main-sequence stellar evolutionary theory , 1995 .

[61]  E. I. Robson,et al.  The Type IA Supernova 1989B in NGC 3627 (M66) , 1994 .

[62]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[63]  Jan Peters,et al.  SN 1991bg - A type Ia supernova with a difference , 1993 .

[64]  L. Ho,et al.  The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .

[65]  R. Kirshner,et al.  SN 1991T: Further Evidence of the Heterogeneous Nature of Type IA Supernovae , 1992 .

[66]  D. Schlegel,et al.  The peculiar type Ia SN 1991T : detonation of a white dwarf ? , 1992 .

[67]  S. E. Persson,et al.  Implications of Ca II emission for physical conditions in the broad-line region of active galactic nuclei , 1989 .

[68]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[69]  R. Weymann,et al.  A MODERATE-RESOLUTION, HIGH-THROUGHPUT CCD CHANNEL FOR THE MMT SPECTROGRAPH , 1989 .

[70]  R. Chevalier,et al.  Late emission from supernovae - A window on stellar nucleosynthesis , 1989 .

[71]  R. Wade,et al.  The Radial Velocity Curve and Peculiar TiO Distribution of the Red Secondary Star in Z Chamaeleontis , 1988 .

[72]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[73]  K. Nomoto Evolution of 8-10 solar mass stars toward electron capture supernovae. I - Formation of electron-degenerate O + NE + MG cores. , 1984 .

[74]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[75]  Space Science Reviews , 1962, Nature.

[76]  William A. Fowler,et al.  Nucleosynthesis in Supernovae. , 1960 .