A near-linear time ε-approximation algorithm for geometric bipartite matching

For point sets A,B ⊂ Rd, |A|=|B|=n, and for a parameter ε > 0, we present an algorithm that computes, in O(n poly(log n, 1/ε)) time, an ε-approximate perfect matching of A and B with high probability; the previously best known algorithm takes Ω(n3/2) time. We approximate the Lp-norm using a distance function, d(•,•) based on a randomly shifted quad-tree. The algorithm iteratively generates an approximate minimum-cost augmenting path under d(•,•) in time proportional to the length of the path. We show that the total length of the augmenting paths generated by the algorithm is O((n/ε)log n), implying that the running time of our algorithm is O(n poly(log n,1/ε)).

[1]  Micha Sharir,et al.  Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications , 1995, SCG '95.

[2]  Kasturi R. Varadarajan A divide-and-conquer algorithm for min-cost perfect matching in the plane , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[3]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[4]  Piotr Indyk,et al.  Approximate congruence in nearly linear time , 2000, SODA '00.

[5]  Pankaj K. Agarwal,et al.  Approximation algorithms for bipartite and non-bipartite matching in the plane , 1999, SODA '99.

[6]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[7]  Ashish Goel,et al.  Perfect matchings in o(n log n) time in regular bipartite graphs , 2009, STOC '10.

[8]  Pravin M. Vaidya,et al.  Geometry helps in matching , 1989, STOC '88.

[9]  Piotr Indyk,et al.  Geometric matching under noise: combinatorial bounds and algorithms , 1999, SODA '99.

[10]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[11]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[12]  Piotr Indyk,et al.  A near linear time constant factor approximation for Euclidean bichromatic matching (cost) , 2007, SODA '07.

[13]  Pankaj K. Agarwal,et al.  On Bipartite Matching under the RMS Distance , 2006, CCCG.

[14]  Robert E. Tarjan,et al.  Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..

[15]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[16]  Pankaj K. Agarwal,et al.  A near-linear constant-factor approximation for euclidean bipartite matching? , 2004, SCG '04.

[17]  Ran Duan,et al.  Approximating Maximum Weight Matching in Near-Linear Time , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[18]  Pankaj K. Agarwal,et al.  Algorithms for the transportation problem in geometric settings , 2012, SODA.

[19]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[20]  AroraSanjeev Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998 .