Widefield microwave imaging in alkali vapor cells with sub-100 μm resolution

We report on widefield microwave vector field imaging with sub um resolution using a microfabricated alkali vapor cell. The setup can additionally image dc magnetic fields, and can be configured to image microwave electric fields. Our camera-based widefield imaging system records 2D images with a 6x6 mm2 field of view at a rate of 10 Hz. It provides up to 50 um spatial resolution, and allows imaging of fields as close as 150 um above structures, through the use of thin external cell walls. This is crucial in allowing us to take practical advantage of the high spatial resolution, as feature sizes in near-fields are on the order of the distance from their source, and represents an order of magnitude improvement in surface-feature resolution compared to previous vapor cell experiments. We present microwave and dc magnetic field images above a selection of devices, demonstrating a microwave sensitivity of 1.4 uT/sqrt-Hz per 50x50x140 um3 voxel, at present limited by the speed of our camera system. Since we image 120x120 voxels in parallel, a single scanned sensor would require a sensitivity of at least 12 nT/sqrt-Hz to produce images with the same sensitivity. Our technique could prove transformative in the design, characterisation, and debugging of microwave devices, as there are currently no satisfactory established microwave imaging techniques. Moreover, it could find applications in medical imaging.

[1]  Robert Wyllie,et al.  Optical magnetometer array for fetal magnetocardiography. , 2012, Optics letters.

[2]  C. Adams,et al.  Absolute absorption on the rubidium D1 line including resonant dipole–dipole interactions , 2011, 1107.3092.

[3]  M. Rosenberry,et al.  Radiation trapping in rubidium optical pumping at low buffer-gas pressures , 2007 .

[4]  W. Gawlik,et al.  Resonant nonlinear magneto-optical effects in atoms , 2002, physics/0203077.

[5]  A. Weis,et al.  Imaging magnetic scalar potentials by laser-induced fluorescence from bright and dark atoms , 2014, 1404.2215.

[6]  Li Yao,et al.  Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer , 2012, Journal of Nanoparticle Research.

[7]  V. Yashchuk,et al.  Submillimeter-resolution magnetic resonance imaging at the Earth’s magnetic field with an atomic magnetometer , 2008 .

[8]  Philipp Treutlein,et al.  Simple microwave field imaging technique using hot atomic vapor cells , 2012, 1207.4964.

[9]  Gonzalo E. Gallo,et al.  Monitoring active corrosion of metals in natural environments with magnetometry , 2012 .

[10]  Luca Marmugi,et al.  All-optical vapor density control for electromagnetically induced transparency , 2012 .

[11]  Patrick L. Chapman,et al.  Corrosion monitoring of metals , 2011 .

[12]  J. Vanier,et al.  The quantum physics of atomic frequency standards , 1989 .

[13]  W. Gawlik,et al.  Saturated-absorption spectroscopy revisited: atomic transitions in strong magnetic fields (>20  mT) with a micrometer-thin cell. , 2014, Optics letters.

[14]  E. Riis Optical Magnetometry , 2013 .

[15]  Ingo Wolff Coplanar Microwave Integrated Circuits , 2006 .

[16]  S Kumar,et al.  Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells. , 2014, Optics letters.

[17]  M. Romalis,et al.  High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. , 2002, Physical review letters.

[18]  Bernd Geck,et al.  Usage of the contactless vector network analysis with varying transmission line geometries , 2008 .

[19]  J. Kitching,et al.  Atomic Sensors – A Review , 2011, IEEE Sensors Journal.

[20]  Shoujun Xu,et al.  Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging: applications from analytical chemistry to molecular sensors. , 2008, Annual review of analytical chemistry.

[21]  S. Knappe,et al.  The hyperfine Paschen–Back Faraday effect , 2014, 1401.1659.

[22]  G. Bison,et al.  A room temperature 19-channel magnetic field mapping device for cardiac signals , 2009, 0906.4869.

[23]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[24]  R. Wakai,et al.  A compact, high performance atomic magnetometer for biomedical applications , 2013, Physics in medicine and biology.

[25]  A. Horsley High resolution field imaging with atomic vapor cells , 2015 .

[26]  Michael P. Weisend,et al.  Multi-sensor magnetoencephalography with atomic magnetometers , 2013, Physics in medicine and biology.

[27]  C. Leroy,et al.  High-Spatial-Resolution Monitoring of Strong Magnetic Field using Rb vapor Nanometric-Thin Cell , 2011, 1103.1228.

[28]  Spatially resolved measurement of relaxation times in a microfabricated vapor cell , 2013, 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC).

[29]  Ram M. Narayanan,et al.  On the Opportunities and Challenges in Microwave Medical Sensing and Imaging , 2015, IEEE Transactions on Biomedical Engineering.

[30]  Ingo Wolff,et al.  Coplanar Microwave Integrated Circuits: Wolff/Coplanar Microwave Integrated Circuits , 2006 .

[31]  Philipp Treutlein,et al.  Imaging of microwave fields using ultracold atoms , 2010, 1009.4651.

[32]  J. Shaffer,et al.  Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. , 2013, Physical review letters.

[33]  N. Nikolova Microwave Imaging for Breast Cancer , 2011, IEEE Microwave Magazine.

[34]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[35]  James P. Shaffer,et al.  Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances , 2012, Nature Physics.

[36]  L. Trahms,et al.  Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers , 2015, Physics in medicine and biology.

[37]  Troels Mørch,et al.  Non-destructive Faraday imaging of dynamically controlled ultracold atoms. , 2013, The Review of scientific instruments.

[38]  Gaetano Mileti,et al.  Experimental and numerical study of the microwave field distribution in a compact magnetron-type microwave cavity , 2014, 2014 European Frequency and Time Forum (EFTF).

[39]  M. Chevrollier Radiation trapping and Lévy flights in atomic vapours: an introductory review , 2012, 1311.0253.

[40]  J. Kitching,et al.  A low-power, high-sensitivity micromachined optical magnetometer , 2012 .

[41]  Shoujun Xu,et al.  Label-free microRNA detection based on exchange-induced remnant magnetization. , 2013, Chemical communications.

[42]  K. Zhao,et al.  Evanescent wave magnetometers with ultrathin (∼100μm) cells , 2008 .

[43]  W. Wasilewski,et al.  How to measure diffusional decoherence in multimode rubidium vapor memories , 2013, 1304.5396.

[44]  Gaetano Mileti,et al.  Imaging of Relaxation Times and Microwave Field Strength in a Microfabricated Vapor Cell , 2013, 1306.1387.

[45]  E. Juzeliunas Advances in detection of magnetic fields induced by electrochemical reactions—a review , 2007 .

[46]  M. Ganzhorn,et al.  Nanoscale microwave imaging with a single electron spin in diamond , 2015, 1508.02719.

[47]  M. Romalis,et al.  Tunable atomic magnetometer for detection of radio-frequency magnetic fields. , 2005, Physical review letters.

[48]  K. Ishikawa,et al.  Diffusion coefficient and sublevel coherence of Rb atoms in N 2 buffer gas , 2000 .

[49]  Li Yao,et al.  Scanning imaging of magnetic nanoparticles for quantitative molecular imaging. , 2010, Angewandte Chemie.

[50]  Igor Savukov,et al.  Ultra-sensitive high-density Rb-87 radio-frequency magnetometer , 2014 .

[51]  E. Mikhailov,et al.  Magnetic field imaging with atomic Rb vapor. , 2009, Optics letters.

[52]  Dmitry Budker,et al.  Magnetic resonance imaging with an optical atomic magnetometer , 2006, Proceedings of the National Academy of Sciences.

[53]  Gaetano Mileti,et al.  Imaging Microwave and DC Magnetic Fields in a Vapor-Cell Rb Atomic Clock , 2015, IEEE Transactions on Instrumentation and Measurement.

[54]  Valeriy V. Yashchuk,et al.  Construction and applications of an atomic magnetic gradiometer based on nonlinear magneto-optical rotation , 2006 .

[55]  I Savukov,et al.  Magnetic-resonance imaging of the human brain with an atomic magnetometer. , 2013, Applied physics letters.

[56]  C. Adams,et al.  Absolute absorption on rubidium D lines: comparison between theory and experiment , 2008, 0805.1139.

[57]  A. C. Maloof,et al.  Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer , 2009, 0910.2206.

[58]  Paul M. Meaney,et al.  Enhancing breast tumor detection with near-field imaging , 2002 .