Prediction of Forest Stand Attributes Using TerraSAR-X Stereo Imagery

Consistent, detailed and up-to-date forest resource information is required for allocation of forestry activities and national and international reporting obligations. We evaluated the forest stand attribute prediction accuracy when radargrammetry was used to derive height information from TerraSAR-X stereo imagery. Radargrammetric elevations were normalized to heights above ground using an airborne laser scanning (ALS)-derived digital terrain model (DTM). Derived height metrics were used as predictors in the most similar neighbor (MSN) estimation approach. In total, 207 field measured plots were used in MSN estimation, and the obtained results were validated using 94 stands with an average area of 4.1 ha. The relative root mean square errors for Lorey's height, basal area, stem volume, and above-ground biomass were 6.7% (1.1 m), 12.0% (2.9 m 2 /ha), 16.3% (31.1 m 3 /ha), and 16.1% (15.6 t/ha). Although the prediction accuracies were promising, it should be noted that the predictions included bias. The respective biases were −4.6% (−0.7 m), −6.4% (−1.6 m 2 /ha), −9.3% (−17.8 m 3 /ha), and −9.5% (−9.1 t/ha). With detailed DTM, TerraSAR-X stereo radargrammetry-derived forest information

[1]  M. Maltamo,et al.  The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs , 2007 .

[2]  J. Repola Biomass equations for Scots pine and Norway spruce in Finland , 2009 .

[3]  Joanne C. White,et al.  Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update , 2013 .

[4]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  J. Hyyppä,et al.  Estimation of stem volume using laser scanning-based canopy height metrics , 2006 .

[6]  Juha Hyyppä,et al.  TerraSAR-X Stereo Radargrammetry and Airborne Scanning LiDAR Height Metrics in Imputation of Forest Aboveground Biomass and Stem Volume , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Manfred Näslund,et al.  Skogsförsöksanstaltens gallringsförsök i tallskog , 1936 .

[8]  Alessandro Montaghi,et al.  Use of ETM+ images to extend stem volume estimates obtained from LiDAR data , 2011 .

[9]  Juha Hyyppä,et al.  Effects of stand size on the accuracy of remote sensing-based forest inventory , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  Annika Kangas,et al.  Analysing the agreement between an Airborne Laser Scanning based forest inventory and a control inventory – a case study in the state owned forests in Finland , 2012 .

[11]  Jacob Strunk,et al.  Using Airborne Light Detection and Ranging as a Sampling Tool for Estimating Forest Biomass Resources in the Upper Tanana Valley of Interior Alaska , 2011 .

[12]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[13]  M. Maltamo,et al.  Estimation of Forest Stand Characteristics Using Spectral Histograms Derived from an Ikonos Satellite Image , 2008 .

[14]  Virpi Junttila,et al.  Estimation of forest stand parameters from airborne laser scanning using calibrated plot databases. , 2010 .

[15]  M. Maltamo,et al.  AUTOMATIC DELINEATION OF FOREST STANDS FROM LIDAR DATA , 2008 .

[16]  Michael A. Wulder,et al.  Modeling Stand Height, Volume, and Biomass from Very High Spatial Resolution Satellite Imagery and Samples of Airborne LiDAR , 2013, Remote. Sens..

[17]  M. Wulder,et al.  Forest inventory height update through the integration of lidar data with segmented Landsat imagery , 2003 .

[18]  Sakari Tuominen,et al.  Landsat TM imagery and high altitude aerial photographs in estimation of forest characteristics , 2005 .

[19]  G. Powell,et al.  High-resolution forest carbon stocks and emissions in the Amazon , 2010, Proceedings of the National Academy of Sciences.

[20]  Josef Kellndorfer,et al.  Statistical fusion of lidar, InSAR, and optical remote sensing data for forest stand height characterization: A regional‐scale method based on LVIS, SRTM, Landsat ETM+, and ancillary data sets , 2010 .

[21]  Joanne C. White,et al.  Lidar calibration and validation for geometric-optical modeling with Landsat imagery , 2012 .

[22]  Johan E. S. Fransson,et al.  Forest Variable Estimation Using Radargrammetric Processing of TerraSAR-X Images in Boreal Forests , 2014, Remote. Sens..

[23]  E. Næsset Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .

[24]  Mathias Schardt,et al.  Assessment of the Stereo-Radargrammetric Mapping Potential of TerraSAR-X Multibeam Spotlight Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Mathias Schardt,et al.  Forest Assessment Using High Resolution SAR Data in X-Band , 2011, Remote. Sens..

[26]  P. Axelsson DEM Generation from Laser Scanner Data Using Adaptive TIN Models , 2000 .

[27]  Albert R. Stage,et al.  Most Similar Neighbor: An Improved Sampling Inference Procedure for Natural Resource Planning , 1995, Forest Science.

[28]  Richard G. Oderwald,et al.  Forest Volume and Biomass Estimation Using Small-Footprint Lidar-Distributional Parameters on a Per-Segment Basis , 2006 .

[29]  Juha Hyyppä,et al.  SAR radargrammetry and scanning LiDAR in predicting forest canopy height , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[30]  Amine Merzouki,et al.  Sensitivity of C-band SAR polarimetric variables to unvegetated agricultural fields , 2013 .

[31]  Jörgen Wallerman,et al.  Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM , 2012 .

[32]  J. Repola Biomass equations for birch in Finland , 2008 .

[33]  J. Fransson,et al.  Combining remotely sensed optical and radar data in kNN-estimation of forest variables , 2003 .

[34]  Accuracy Analysis of Stereo Side-Looking Radar * Radar stereo geometry and the accuracy of derived coordinates and coordinate differences , 2008 .

[35]  E. Tomppo,et al.  Harmonization of National Forest Inventories in Europe: Advances under COST Action E43 , 2012 .

[36]  S. Solberg,et al.  Monitoring spruce volume and biomass with InSAR data from TanDEM-X , 2013 .

[37]  W. Cohen,et al.  Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .

[38]  Nicholas C. Coops,et al.  Forest inventory stand height estimates from very high spatial resolution satellite imagery calibrated with lidar plots , 2013 .

[39]  Göran Ståhl,et al.  Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. , 2011 .

[40]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[41]  M. Vastaranta,et al.  Prediction of plot-level forest variables using TerraSAR-X stereo SAR data , 2012 .

[42]  Juha Hyyppä,et al.  Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data , 2012 .

[43]  M. Bauer,et al.  Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method , 2001 .

[44]  Mikko Vastaranta,et al.  Forest mapping and monitoring using active 3D remote sensing , 2012 .

[45]  K. Lim,et al.  Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators , 2004 .

[46]  Jouko Laasasenaho Taper curve and volume functions for pine, spruce and birch [Pinus sylvestris, Picea abies, Betula pendula, Betula pubescens] , 1982 .

[47]  Juha Hyyppä,et al.  Comparing Accuracy of Airborne Laser Scanning and TerraSAR-X Radar Images in the Estimation of Plot-Level Forest Variables , 2010, Remote. Sens..

[48]  Ross Nelson,et al.  Estimating forest biomass and volume using airborne laser data , 1988 .

[49]  R. Nelson,et al.  Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway , 2011 .

[50]  Göran Ståhl,et al.  Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning , 2012 .

[51]  Juha Hyyppä,et al.  Uncertainty in timber assortment estimates predicted from forest inventory data , 2010, European Journal of Forest Research.

[52]  E. Næsset,et al.  Laser scanning of forest resources: the nordic experience , 2004 .

[53]  Nicholas C. Coops,et al.  Lidar plots — a new large-area data collection option: context, concepts, and case study , 2012 .

[54]  Dan Johan Weydahl,et al.  Detection of Forest Clear-Cuts with Shuttle Radar Topography Mission (SRTM) and Tandem-X InSAR Data , 2013, Remote. Sens..

[55]  Juha Hyyppä,et al.  Retrieval of Forest Aboveground Biomass and Stem Volume with Airborne Scanning LiDAR , 2013, Remote. Sens..