Prediction of Forest Stand Attributes Using TerraSAR-X Stereo Imagery
暂无分享,去创建一个
Juha Hyyppä | Jussi Peuhkurinen | Mikko T. Niemi | Ville Kankare | Markus Holopainen | Mikko Vastaranta | Mika Karjalainen | M. Vastaranta | M. Holopainen | J. Hyyppä | J. Peuhkurinen | M. Karjalainen | V. Kankare
[1] M. Maltamo,et al. The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs , 2007 .
[2] J. Repola. Biomass equations for Scots pine and Norway spruce in Finland , 2009 .
[3] Joanne C. White,et al. Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update , 2013 .
[4] Dorin Comaniciu,et al. Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[5] J. Hyyppä,et al. Estimation of stem volume using laser scanning-based canopy height metrics , 2006 .
[6] Juha Hyyppä,et al. TerraSAR-X Stereo Radargrammetry and Airborne Scanning LiDAR Height Metrics in Imputation of Forest Aboveground Biomass and Stem Volume , 2014, IEEE Transactions on Geoscience and Remote Sensing.
[7] Manfred Näslund,et al. Skogsförsöksanstaltens gallringsförsök i tallskog , 1936 .
[8] Alessandro Montaghi,et al. Use of ETM+ images to extend stem volume estimates obtained from LiDAR data , 2011 .
[9] Juha Hyyppä,et al. Effects of stand size on the accuracy of remote sensing-based forest inventory , 2001, IEEE Trans. Geosci. Remote. Sens..
[10] Annika Kangas,et al. Analysing the agreement between an Airborne Laser Scanning based forest inventory and a control inventory – a case study in the state owned forests in Finland , 2012 .
[11] Jacob Strunk,et al. Using Airborne Light Detection and Ranging as a Sampling Tool for Estimating Forest Biomass Resources in the Upper Tanana Valley of Interior Alaska , 2011 .
[12] E. Næsset. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .
[13] M. Maltamo,et al. Estimation of Forest Stand Characteristics Using Spectral Histograms Derived from an Ikonos Satellite Image , 2008 .
[14] Virpi Junttila,et al. Estimation of forest stand parameters from airborne laser scanning using calibrated plot databases. , 2010 .
[15] M. Maltamo,et al. AUTOMATIC DELINEATION OF FOREST STANDS FROM LIDAR DATA , 2008 .
[16] Michael A. Wulder,et al. Modeling Stand Height, Volume, and Biomass from Very High Spatial Resolution Satellite Imagery and Samples of Airborne LiDAR , 2013, Remote. Sens..
[17] M. Wulder,et al. Forest inventory height update through the integration of lidar data with segmented Landsat imagery , 2003 .
[18] Sakari Tuominen,et al. Landsat TM imagery and high altitude aerial photographs in estimation of forest characteristics , 2005 .
[19] G. Powell,et al. High-resolution forest carbon stocks and emissions in the Amazon , 2010, Proceedings of the National Academy of Sciences.
[20] Josef Kellndorfer,et al. Statistical fusion of lidar, InSAR, and optical remote sensing data for forest stand height characterization: A regional‐scale method based on LVIS, SRTM, Landsat ETM+, and ancillary data sets , 2010 .
[21] Joanne C. White,et al. Lidar calibration and validation for geometric-optical modeling with Landsat imagery , 2012 .
[22] Johan E. S. Fransson,et al. Forest Variable Estimation Using Radargrammetric Processing of TerraSAR-X Images in Boreal Forests , 2014, Remote. Sens..
[23] E. Næsset. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .
[24] Mathias Schardt,et al. Assessment of the Stereo-Radargrammetric Mapping Potential of TerraSAR-X Multibeam Spotlight Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.
[25] Mathias Schardt,et al. Forest Assessment Using High Resolution SAR Data in X-Band , 2011, Remote. Sens..
[26] P. Axelsson. DEM Generation from Laser Scanner Data Using Adaptive TIN Models , 2000 .
[27] Albert R. Stage,et al. Most Similar Neighbor: An Improved Sampling Inference Procedure for Natural Resource Planning , 1995, Forest Science.
[28] Richard G. Oderwald,et al. Forest Volume and Biomass Estimation Using Small-Footprint Lidar-Distributional Parameters on a Per-Segment Basis , 2006 .
[29] Juha Hyyppä,et al. SAR radargrammetry and scanning LiDAR in predicting forest canopy height , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.
[30] Amine Merzouki,et al. Sensitivity of C-band SAR polarimetric variables to unvegetated agricultural fields , 2013 .
[31] Jörgen Wallerman,et al. Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM , 2012 .
[32] J. Repola. Biomass equations for birch in Finland , 2008 .
[33] J. Fransson,et al. Combining remotely sensed optical and radar data in kNN-estimation of forest variables , 2003 .
[35] E. Tomppo,et al. Harmonization of National Forest Inventories in Europe: Advances under COST Action E43 , 2012 .
[36] S. Solberg,et al. Monitoring spruce volume and biomass with InSAR data from TanDEM-X , 2013 .
[37] W. Cohen,et al. Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .
[38] Nicholas C. Coops,et al. Forest inventory stand height estimates from very high spatial resolution satellite imagery calibrated with lidar plots , 2013 .
[39] Göran Ståhl,et al. Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. , 2011 .
[40] Peter Dalgaard,et al. R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .
[41] M. Vastaranta,et al. Prediction of plot-level forest variables using TerraSAR-X stereo SAR data , 2012 .
[42] Juha Hyyppä,et al. Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data , 2012 .
[43] M. Bauer,et al. Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method , 2001 .
[44] Mikko Vastaranta,et al. Forest mapping and monitoring using active 3D remote sensing , 2012 .
[45] K. Lim,et al. Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators , 2004 .
[46] Jouko Laasasenaho. Taper curve and volume functions for pine, spruce and birch [Pinus sylvestris, Picea abies, Betula pendula, Betula pubescens] , 1982 .
[47] Juha Hyyppä,et al. Comparing Accuracy of Airborne Laser Scanning and TerraSAR-X Radar Images in the Estimation of Plot-Level Forest Variables , 2010, Remote. Sens..
[48] Ross Nelson,et al. Estimating forest biomass and volume using airborne laser data , 1988 .
[49] R. Nelson,et al. Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway , 2011 .
[50] Göran Ståhl,et al. Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning , 2012 .
[51] Juha Hyyppä,et al. Uncertainty in timber assortment estimates predicted from forest inventory data , 2010, European Journal of Forest Research.
[52] E. Næsset,et al. Laser scanning of forest resources: the nordic experience , 2004 .
[53] Nicholas C. Coops,et al. Lidar plots — a new large-area data collection option: context, concepts, and case study , 2012 .
[54] Dan Johan Weydahl,et al. Detection of Forest Clear-Cuts with Shuttle Radar Topography Mission (SRTM) and Tandem-X InSAR Data , 2013, Remote. Sens..
[55] Juha Hyyppä,et al. Retrieval of Forest Aboveground Biomass and Stem Volume with Airborne Scanning LiDAR , 2013, Remote. Sens..