Metal ions in the synthesis of interlocked molecules and materials.

The use of metal ions to template the synthesis of catenanes by Sauvage and co-workers was a pivotal moment in the development of the field of interlocked molecules. In this Review Article we shall examine the different roles metal-ligand interactions play in modern syntheses of interlocked molecules and materials, with a particular focus on seminal contributions and the advantages and disadvantages of employing metal ligand interactions.

[1]  K. Zhu,et al.  Metal-organic frameworks utilising an interlocked, hexadentate linker containing a tetra-carboxylate axle and a bis(pyridine) wheel. , 2017, Dalton transactions.

[2]  Jason Y. C. Lim,et al.  Chalcogen Bonding Macrocycles and [2]Rotaxanes for Anion Recognition. , 2017, Journal of the American Chemical Society.

[3]  I. Vitorica-Yrezabal,et al.  Braiding a molecular knot with eight crossings , 2017, Science.

[4]  J. Fraser Stoddart,et al.  The Nature of the Mechanical Bond: From Molecules to Machines , 2016 .

[5]  Luca Cera,et al.  Iterative Synthesis of Oligo[n]rotaxanes in Excellent Yield. , 2016, Journal of the American Chemical Society.

[6]  J. W. Ward,et al.  Triply Threaded [4]Rotaxanes. , 2016, Journal of the American Chemical Society.

[7]  P. Kruger,et al.  Formation of a Polythreaded, Metal–Organic Framework Utilizing an Interlocked Hexadentate, Carboxylate Linker , 2016 .

[8]  K. Zhu,et al.  Thermally Driven Dynamics of a Rotaxane Wheel about an Imidazolium Axle inside a Metal-Organic Framework. , 2016, ChemPlusChem.

[9]  H. Anderson,et al.  Polyyne Rotaxanes: Stabilization by Encapsulation , 2016, Journal of the American Chemical Society.

[10]  S. Goldup,et al.  Properties and emerging applications of mechanically interlocked ligands. , 2016, Chemical communications.

[11]  P. Beer,et al.  Active‐Metal Template Synthesis of a Halogen‐Bonding Rotaxane for Anion Recognition , 2015, Chemistry.

[12]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[13]  I. Vitorica-Yrezabal,et al.  Lanthanide Template Synthesis of Trefoil Knots of Single Handedness. , 2015, Journal of the American Chemical Society.

[14]  Kristopher J Harris,et al.  Mechanically Interlocked Linkers inside Metal-Organic Frameworks: Effect of Ring Size on Rotational Dynamics. , 2015, Journal of the American Chemical Society.

[15]  S. Hoekman,et al.  Goldberg Active Template Synthesis of a [2]Rotaxane Ligand for Asymmetric Transition-Metal Catalysis. , 2015, Journal of the American Chemical Society.

[16]  Kelong Zhu,et al.  A molecular shuttle that operates inside a metal-organic framework. , 2015, Nature chemistry.

[17]  Timothy R. Cook,et al.  Self-assembly of [3]catenanes and a [4]molecular necklace based on a cryptand/paraquat recognition motif. , 2015, Organic letters.

[18]  Chien‐Chen Lai,et al.  Synthesizing [2]Rotaxanes and [2]Catenanes through Na(+)-Templated Clipping of Macrocycles around Oligo(ethylene glycol) Units. , 2015, Organic letters.

[19]  M. Liu,et al.  Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches , 2015, Proceedings of the National Academy of Sciences.

[20]  Feihe Huang,et al.  Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. , 2015, Chemical reviews.

[21]  Rongmei Zhu,et al.  Stepwise halide-triggered double and triple catenation of self-assembled coordination cages. , 2015, Angewandte Chemie.

[22]  S. Goldup,et al.  Competitive formation of homocircuit [3]rotaxanes in synthetically useful yields in the bipyridine-mediated active template CuAAC reaction , 2015, Chemical science.

[23]  D. Leigh,et al.  A Star of David catenane. , 2014, Nature chemistry.

[24]  C. Campbell,et al.  A Simple and Highly Effective Ligand System for the Copper(I)-Mediated Assembly of Rotaxanes** , 2014, Angewandte Chemie.

[25]  Tanya K. Ronson,et al.  Palladium-templated subcomponent self-assembly of macrocycles, catenanes, and rotaxanes. , 2014, Angewandte Chemie.

[26]  D. Leigh,et al.  Lanthanide template synthesis of a molecular trefoil knot. , 2014, Journal of the American Chemical Society.

[27]  Hyunuk Kim,et al.  Molecular self-assembly of arene-Ru based interlocked catenane metalla-cages. , 2014, Chemical communications.

[28]  S. Moratti,et al.  CuAAC "click" active-template synthesis of functionalised [2]rotaxanes using small exo-substituted macrocycles: how small is too small? , 2014, Chemical communications.

[29]  K. Zhu,et al.  Metal-organic frameworks with mechanically interlocked pillars: controlling ring dynamics in the solid-state via a reversible phase change. , 2014, Journal of the American Chemical Society.

[30]  S. Goldup,et al.  Chemical consequences of mechanical bonding in catenanes and rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis. , 2014, Chemical communications.

[31]  Timothy R. Cook,et al.  Self-assembly of triangular and hexagonal molecular necklaces. , 2014, Journal of the American Chemical Society.

[32]  Stephen M. Goldup,et al.  An Efficient Approach to Mechanically Planar Chiral Rotaxanes , 2014, Journal of the American Chemical Society.

[33]  T. Gunnlaugsson,et al.  Self-assembly formation of mechanically interlocked [2]- and [3]catenanes using lanthanide ion [Eu(III)] templation and ring closing metathesis reactions. , 2014, Chemical communications.

[34]  P. Beer,et al.  Axle component separated ion-pair recognition by a neutral heteroditopic [2]rotaxane. , 2014, Chemical communications.

[35]  Yi‐Hung Liu,et al.  Synthesis of a [2]catenane from the sodium ion templated orthogonal arrangement of two diethylene glycol chains. , 2013, Angewandte Chemie.

[36]  S. J. Loeb,et al.  An interwoven metal-organic framework combining mechanically interlocked linkers and interpenetrated networks. , 2013, Chemistry.

[37]  Yi‐Hung Liu,et al.  Sodium ions template the formation of rotaxanes from BPX26C6 and nonconjugated amide and urea functionalities. , 2013, Angewandte Chemie.

[38]  S. Goldup,et al.  Synthesis of a rotaxane Cu(I) triazolide under aqueous conditions. , 2013, Journal of the American Chemical Society.

[39]  P. Beer,et al.  Lanthanide cation-templated synthesis of rotaxanes. , 2013, Chemical communications.

[40]  Yinghua Jin,et al.  Recent advances in dynamic covalent chemistry. , 2013, Chemical Society reviews.

[41]  Y. Mutoh,et al.  Synthesis of [2]rotaxanes by the copper-mediated threading reactions of aryl iodides with alkynes. , 2013, Organic letters.

[42]  Samuel P. Black,et al.  Generation of a Dynamic System of Three‐Dimensional Tetrahedral Polycatenanes , 2013, Angewandte Chemie.

[43]  T. Cook,et al.  Formation of [3]catenanes from 10 precursors via multicomponent coordination-driven self-assembly of metallarectangles. , 2013, Journal of the American Chemical Society.

[44]  C. Campbell,et al.  Template synthesis of molecular knots. , 2013, Chemical Society reviews.

[45]  J. W. Ward,et al.  Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine , 2013, Science.

[46]  V. Vukotic,et al.  Coordination polymers containing rotaxane linkers. , 2012, Chemical Society reviews.

[47]  K. Zhu,et al.  [2]Pseudorotaxanes, [2]rotaxanes and metal-organic rotaxane frameworks containing tetra-substituted dibenzo[24]crown-8 wheels. , 2012, Organic & biomolecular chemistry.

[48]  Kristopher J Harris,et al.  Metal-organic frameworks with dynamic interlocked components. , 2012, Nature chemistry.

[49]  C. Campbell,et al.  Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. , 2011, Angewandte Chemie.

[50]  A. Slawin,et al.  En route to a molecular sheaf: active metal template synthesis of a [3]rotaxane with two axles threaded through one ring. , 2011, Journal of the American Chemical Society.

[51]  P. Beer,et al.  Sodium and barium cation-templated synthesis and cation-induced molecular pirouetting of a pyridine N-oxide containing [2]rotaxane. , 2011, Chemical communications.

[52]  S. Goldup,et al.  Macrocycle size matters: "small" functionalized rotaxanes in excellent yield using the CuAAC active template approach. , 2011, Angewandte Chemie.

[53]  V. Vukotic,et al.  Linking [2]rotaxane wheels to create a new type of metal organic rotaxane framework. , 2011, Chemical communications.

[54]  J. F. Stoddart,et al.  A metal-organic framework replete with ordered donor-acceptor catenanes. , 2010, Chemical communications.

[55]  V. Vukotic,et al.  One-, two- and three-periodic metal-organic rotaxane frameworks (MORFs): linking cationic transition-metal nodes with an anionic rotaxane ligand. , 2010, Chemistry.

[56]  G. Clever,et al.  A pH switchable pseudorotaxane based on a metal cage and a bis-anionic thread. , 2010, Chemistry.

[57]  J. F. Stoddart,et al.  A catenated strut in a catenated metal-organic framework. , 2010, Angewandte Chemie.

[58]  P. McGonigal,et al.  Ligand-assisted nickel-catalysed sp3–sp3 homocoupling of unactivated alkyl bromides and its application to the active template synthesis of rotaxanes , 2010 .

[59]  A. Slawin,et al.  An unusual nickel-copper-mediated alkyne homocoupling reaction for the active-template synthesis of [2]rotaxanes. , 2010, Journal of the American Chemical Society.

[60]  Kevin D. Haenni,et al.  Diels-Alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles. , 2010, Journal of the American Chemical Society.

[61]  H. Raubenheimer,et al.  Intermolecular aurophilic interactions facilitate assembly of a complex rotaxane in solution. , 2009, Chemical communications.

[62]  P. McGonigal,et al.  Active metal template synthesis of [2]catenanes. , 2009, Journal of the American Chemical Society.

[63]  Christopher B. Caputo,et al.  Eliminating the need for independent counterions in the construction of metal-organic rotaxane frameworks (MORFs). , 2009, Chemical communications.

[64]  David A Leigh,et al.  Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. , 2009, Chemical Society reviews.

[65]  J. F. Stoddart,et al.  The chemistry of the mechanical bond. , 2009, Chemical Society reviews.

[66]  David A. Leigh,et al.  Hybrid organic–inorganic rotaxanes and molecular shuttles , 2009, Nature.

[67]  P. J. Lusby,et al.  Getting harder: cobalt(III)-template synthesis of catenanes and rotaxanes. , 2009, Journal of the American Chemical Society.

[68]  S. Saito,et al.  Synthesis of [2]catenanes by oxidative intramolecular diyne coupling mediated by macrocyclic copper(I) complexes. , 2009, Angewandte Chemie.

[69]  J. F. Stoddart,et al.  Kinetic and thermodynamic approaches for the efficient formation of mechanical bonds. , 2008, Accounts of chemical research.

[70]  P. J. Lusby,et al.  Gold(I)-template catenane and rotaxane synthesis. , 2008, Angewandte Chemie.

[71]  F. Zerbetto,et al.  Cadiot-Chodkiewicz active template synthesis of rotaxanes and switchable molecular shuttles with weak intercomponent interactions. , 2008, Angewandte Chemie.

[72]  P. J. Lusby,et al.  Active template synthesis of rotaxanes and molecular shuttles with switchable dynamics by four-component Pd(II)-promoted Michael additions. , 2008, Angewandte Chemie.

[73]  R. Kuroda,et al.  A quadruply stranded metallohelicate and its spontaneous dimerization into an interlocked metallohelicate. , 2008, Angewandte Chemie.

[74]  Kevin D. Haenni,et al.  [2]Rotaxanes through palladium active-template oxidative heck cross-couplings. , 2007, Journal of the American Chemical Society.

[75]  Kevin D. Haenni,et al.  A catalytic palladium active-metal template pathway to [2]rotaxanes. , 2007, Angewandte Chemie.

[76]  Kohzo Ito,et al.  Novel Cross-Linking Concept of Polymer Network: Synthesis, Structure, and Properties of Slide-Ring Gels with Freely Movable Junctions , 2007 .

[77]  M. Jennings,et al.  Reversible formation of a [2]catenane through first- and second-sphere coordination. , 2007, Angewandte Chemie.

[78]  S. J. Loeb,et al.  Rotaxanes as ligands: from molecules to materials. , 2007, Chemical Society reviews.

[79]  P. Beer,et al.  Anion templated assembly of mechanically interlocked structures. , 2007, Chemical Society reviews.

[80]  S. J. Loeb,et al.  The Missing Link: A 2D Metal-Organic Rotaxane Framework (MORF) with One Rotaxane Linker and One Naked Linker , 2007 .

[81]  S. Saito,et al.  Synthesis of [2]rotaxanes by the catalytic reactions of a macrocyclic copper complex. , 2006, Organic letters.

[82]  J. Sauvage,et al.  Efficient synthesis of a labile copper(I)-rotaxane complex using click chemistry , 2006 .

[83]  David A Leigh,et al.  Catalytic "click" rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. , 2006, Journal of the American Chemical Society.

[84]  S. J. Loeb,et al.  Metal-organic rotaxane frameworks; MORFs. , 2005, Chemical communications.

[85]  S. J. Loeb,et al.  Metal-organic rotaxane frameworks: three-dimensional polyrotaxanes from lanthanide-ion nodes, pyridinium N-oxide axles, and crown-ether wheels. , 2005, Angewandte Chemie.

[86]  David A Leigh,et al.  A 3D interlocked structure from a 2D template: structural requirements for the assembly of a square-planar metal-coordinated [2]rotaxane. , 2004, Angewandte Chemie.

[87]  J. Siegel,et al.  Synthetic approaches to a molecular Borromean link: two-ring threading with polypyridine templates. , 2003, Angewandte Chemie.

[88]  S. J. Loeb,et al.  Channels and cavities lined with interlocked components: metal-based polyrotaxanes that utilize pyridinium axles and crown ether wheels as ligands. , 2003, Angewandte Chemie.

[89]  Stuart J Rowan,et al.  Dynamic covalent chemistry. , 2002, Angewandte Chemie.

[90]  Y. Diskin‐Posner,et al.  Crystal Engineering of 2‐D and 3‐D Multiporphyrin Architectures − The Versatile Topologies of Tetracarboxyphenylporphyrin‐Based Materials , 2001 .

[91]  J. Vittal,et al.  Self-assembly of rings, catenanes, and a doubly braided catenane containing gold(I): the hinge-group effect in diacetylide ligands. , 2001, Chemistry.

[92]  David A Leigh,et al.  Benzylic Imine Catenates: Readily Accessible Octahedral Analogues of the Sauvage Catenates. , 2001, Angewandte Chemie.

[93]  McArdle,et al.  Controlled Self-Assembly of Cyclic Gold(I) Complexes: The First Family of Organometallic Catenanes. , 1999, Angewandte Chemie.

[94]  M. Fujita,et al.  Spontaneous assembly of ten components into two interlocked, identical coordination cages , 1999, Nature.

[95]  N. Armaroli,et al.  Photoinduced processes in porphyrin-stoppered [3]-rotaxanes , 1999 .

[96]  C. Dietrich-Buchecker,et al.  Lithium templated synthesis of catenanes: efficient synthesis of doubly interlocked [2]-catenanes , 1999 .

[97]  P. Ashton,et al.  Molecular Necklace: Quantitative Self-Assembly of a Cyclic Oligorotaxane from Nine Molecules , 1998 .

[98]  Robert H. Grubbs,et al.  High‐Yield Synthesis of [2] Catenanes by Intramolecular Ring‐Closing Metathesis , 1997 .

[99]  Kimoon Kim,et al.  Polycatenated Two-Dimensional Polyrotaxane Net , 1997 .

[100]  Kimoon Kim,et al.  Self-assembly of a polyrotaxane containing a cyclic ''bead'' in every structural unit in the solid state: Cucurbituril molecules threaded on a one-dimensional coordination polymer , 1996 .

[101]  David J. Williams,et al.  A Gold(I) [2]Catene† , 1995 .

[102]  M. Fujita,et al.  A Molecular Lock , 1995 .

[103]  M. Fujita,et al.  Quantitative self-assembly of a [2]catenane from two preformed molecular rings , 1994, Nature.

[104]  F. Bickelhaupt,et al.  Formation of the first organometallic catenane , 1993 .

[105]  Anthony Harriman,et al.  A Light‐Induced Molecular Shuttle Based on a [2]Rotaxane‐Derived Triad , 1993 .

[106]  M. Ward,et al.  A bis(terpyridine)ruthenium(II) catenate , 1991 .

[107]  H. Gibson,et al.  Synthesis of a rotaxane via the template method , 1991 .

[108]  A. Spek,et al.  X-ray structure of (1,3-xylyl-18-crown-5)diphenylmagnesium: an organometallic rotaxane , 1988 .

[109]  D. M. Kushlan,et al.  Interactions of a diarylmagnesium compound with cryptands and crown ethers: formation of Ar3Mg-, ArMg(cryptand)+, and threaded Ar2Mg(crown ether) , 1987 .

[110]  J. Kintzinger,et al.  Synthese et etude d'un catenate de cuivre chiral comportant deux anneaux coordinant a 27 atomes , 1987 .

[111]  Jean-Pierre Sauvage,et al.  Interlocked macrocyclic ligands: a kinetic catenand effect in copper(I) complexes , 1985 .

[112]  H. Ogino,et al.  Synthesis and properties of rotaxane complexes. 2. Rotaxanes consisting of .alpha.-or .beta.-cyclodextrin threaded by (.mu.-.alpha.,.omega.-diaminoalkane)bis[chlorobis(ethylenediamine)cobalt(III)] complexes , 1984 .

[113]  Jean-Pierre Sauvage,et al.  Templated synthesis of interlocked macrocyclic ligands: the catenands , 1984 .

[114]  Jean-Pierre Sauvage,et al.  Une nouvelle famille de molecules : les metallo-catenanes , 1983 .

[115]  H. Ogino Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by .alpha.,.omega.-diaminoalkanes coordinated to cobalt(III) complexes , 1981 .

[116]  Gottfried Schill,et al.  The Preparation of Catena Compounds by Directed Synthesis , 1964 .

[117]  E. Wasserman,et al.  THE PREPARATION OF INTERLOCKING RINGS: A CATENANE1 , 1960 .