The Parameterized Complexity of the k-Biclique Problem

Given a graph <i>G</i> and an integer <i>k</i>, the <i>k</i>-B<scp>iclique</scp> problem asks whether <i>G</i> contains a complete bipartite subgraph with <i>k</i> vertices on each side. Whether there is an <i>f</i>(<i>k</i>) ċ |<i>G</i>|<sup><i>O</i>(1)</sup>-time algorithm, solving <i>k</i>-B<scp>iclique</scp> for some computable function <i>f</i> has been a longstanding open problem. We show that <i>k</i>-B<scp>iclique</scp> is <b>W[1]</b>-hard, which implies that such an <i>f</i>(<i>k</i>) ċ |<i>G</i>|<sup><i>O</i>(1)</sup>-time algorithm does not exist under the hypothesis <b>W[1]</b> ≠ <b>FPT</b> from parameterized complexity theory. To prove this result, we give a reduction which, for every <i>n</i>-vertex graph <i>G</i> and small integer <i>k</i>, constructs a bipartite graph <i>H</i> = (<i>L</i>⊍ <i>R</i>,<i>E</i>) in time polynomial in <i>n</i> such that if <i>G</i> contains a clique with <i>k</i> vertices, then there are <i>k</i>(<i>k</i> − 1)/2 vertices in <i>L</i> with <i>n</i><sup>θ(1/<i>k</i>)</sup> common neighbors; otherwise, any <i>k</i>(<i>k</i> − 1)/2 vertices in <i>L</i> have at most (<i>k</i>+1)! common neighbors. An additional feature of this reduction is that it creates a gap on the right side of the biclique. Such a gap might have further applications in proving hardness of approximation results. Assuming a randomized version of Exponential Time Hypothesis, we establish an <i>f</i>(<i>k</i>) ċ |<i>G</i>|<sup><i>o</i>(&sqrt;<i>k</i>)</sup>-time lower bound for <i>k</i>-<sc>Biclique</sc> for any computable function <i>f</i>. Combining our result with the work of Bulatov and Marx [2014], we obtain a dichotomy classification of the parameterized complexity of cardinality constraint satisfaction problems.

[1]  Leonard M. Adleman,et al.  Finding irreducible polynomials over finite fields , 1986, STOC '86.

[2]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[3]  Noga Alon,et al.  Color-coding , 1995, JACM.

[4]  Lajos Rónyai,et al.  Norm-graphs and bipartite turán numbers , 1996, Comb..

[5]  Dieter Kratsch,et al.  On Independent Sets and Bicliques in Graphs , 2008, WG.

[6]  Subhash Khot,et al.  Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[7]  Eduardo C. Xavier,et al.  A note on a Maximum k-Subset Intersection problem , 2012, Inf. Process. Lett..

[8]  Shimon Kogan,et al.  Hardness of approximation of the Balanced Complete Bipartite Subgraph problem , 2004 .

[9]  Paul Erdös,et al.  A Theorem of Sylvester and Schur , 1934 .

[10]  Ola Svensson,et al.  Inapproximability Results for Maximum Edge Biclique, Minimum Linear Arrangement, and Sparsest Cut , 2011, SIAM J. Comput..

[11]  Dániel Marx,et al.  Constraint Satisfaction Parameterized by Solution Size , 2014, SIAM J. Comput..

[12]  Vadim V. Lozin,et al.  Linear Time Algorithm for Computing a Small Biclique in Graphs without Long Induced Paths , 2012, SWAT.

[13]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[14]  Lajos Rónyai,et al.  Extremal bipartite graphs and superpolynomial lower bounds for monotone span programs , 1996, STOC '96.

[15]  Sandra Maurer Finite Fields Theory And Computation The Meeting Point Of Number Theory Computer Science Coding Theory And Cryptography , 2016 .

[16]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[17]  W. Schmidt Equations over Finite Fields: An Elementary Approach , 1976 .

[18]  Dániel Marx,et al.  Parameterized Complexity and Approximation Algorithms , 2008, Comput. J..

[19]  Martin Grohe The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2007, JACM.

[20]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[21]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[22]  Dániel Marx,et al.  Can you beat treewidth? , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[23]  Uriel Feige,et al.  Resolution lower bounds for the weak pigeon hole principle , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[24]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[25]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[26]  Michael R. Fellows,et al.  Parameterized Approximation Problems , 2006, IWPEC.

[27]  David S. Johnson The NP-Completeness Column: An Ongoing Guide , 1986, J. Algorithms.

[28]  Mario Aachen Equations Over Finite Fields An Elementary Approach , 2016 .

[29]  Liming Cai,et al.  Fixed-Parameter Approximation: Conceptual Framework and Approximability Results , 2006, IWPEC.

[30]  P. Erdös,et al.  Graph Theory and Probability , 1959 .

[31]  Henning Fernau,et al.  Exact exponential-time algorithms for finding bicliques , 2010, Inf. Process. Lett..

[32]  Konstantin Kutzkov An exact exponential time algorithm for counting bipartite cliques , 2012, Inf. Process. Lett..

[33]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[34]  Sanjeev Arora,et al.  The approximability of NP-hard problems , 1998, STOC '98.

[35]  Ge Xia,et al.  Linear FPT reductions and computational lower bounds , 2004, STOC '04.

[36]  Harald Niederreiter,et al.  Finite fields: Author Index , 1996 .

[37]  Yijia Chen,et al.  On Parameterized Approximability , 2006, IWPEC.