Rapid post-mortem oxygen isotope exchange in biogenic silica

[1]  S. P. Akse Studying climate signals through microscale chemical variability in diatoms. : A high-resolution chemical imaging study of biogenic silica , 2020 .

[2]  R. Congestri,et al.  UV-shielding and wavelength conversion by centric diatom nanopatterned frustules , 2018, Scientific Reports.

[3]  Jamie Nuñez,et al.  NanoSIMS for biological applications: Current practices and analyses. , 2018, Biointerphases.

[4]  M. Leng,et al.  Post‐mortem oxygen isotope exchange within cultured diatom silica , 2017, Rapid communications in mass spectrometry : RCM.

[5]  H. Spero,et al.  Influence of exchangeable oxygen on biogenic silica oxygen isotope data , 2017 .

[6]  J. Dodd,et al.  Dehydroxylation and diagenetic variations in diatom oxygen isotope values , 2017 .

[7]  A. Mackay,et al.  An experiment to assess the effects of diatom dissolution on oxygen isotope ratios. , 2016, Rapid communications in mass spectrometry : RCM.

[8]  M. Maldonado,et al.  Technical Note: Silica stable isotopes and silicification in a carnivorous sponge Asbestopluma sp. , 2014 .

[9]  M. Leng,et al.  Pliocene diatom and sponge spicule oxygen isotope ratios from the Bering Sea: isotopic offsets and future directions , 2014 .

[10]  C. Volkmer-Ribeiro,et al.  Assessing the relationship between the δ 18 O signatures of siliceous sponge spicules and water in a~tropical lacustrine environment (Minas Gerais, Brazil) , 2013 .

[11]  F. McCubbin,et al.  Rapid post‐mortem maturation of diatom silica oxygen isotope values , 2012 .

[12]  M. Kuypers,et al.  Look@NanoSIMS--a tool for the analysis of nanoSIMS data in environmental microbiology. , 2012, Environmental microbiology.

[13]  K. Hendry,et al.  The relationship between silicon isotope fractionation in sponges and silicic acid concentration: Modern and core-top studies of biogenic opal , 2012 .

[14]  M. Leng,et al.  Inter-laboratory comparison of oxygen isotope compositions from biogenic silica , 2011 .

[15]  Kiminori Sato,et al.  Diffusion-Reaction of Water Molecules in Angstrom Pores as Basic Mechanism of Biogenic Quartz Formation , 2011 .

[16]  Marcin Wojdyr,et al.  Fityk: a general-purpose peak fitting program , 2010 .

[17]  Jürgen Popp,et al.  Spatially resolved determination of the structure and composition of diatom cell walls by Raman and FTIR imaging , 2010, Analytical and bioanalytical chemistry.

[18]  R. B. Georg,et al.  Deep ocean nutrients during the Last Glacial Maximum deduced from sponge silicon isotopic compositions , 2010 .

[19]  Z. Sharp,et al.  A laser fluorination method for oxygen isotope analysis of biogenic silica and a new oxygen isotope calibration of modern diatoms in freshwater environments , 2010 .

[20]  P. Cappellen,et al.  Reactivity of biogenic silica: Surface versus bulk charge density , 2010 .

[21]  M. Leng,et al.  A review of diatom δ18O in palaeoceanography , 2009 .

[22]  Xiaohong Wang,et al.  The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review , 2007 .

[23]  Jessica I. Kelz,et al.  Nanoscale control of silica morphology and three-dimensional structure during diatom cell wall formation , 2006 .

[24]  R. Moschen,et al.  Transfer and early diagenesis of biogenic silica oxygen isotope signals during settling and sedimentation of diatoms in a temperate freshwater lake (Lake Holzmaar, Germany) , 2006 .

[25]  M. Leng,et al.  A review of the oxygen isotope composition of lacustrine diatom silica for palaeoclimate reconstruction , 2006 .

[26]  G. Haug,et al.  Diatom δ18O evidence for the development of the modern halocline system in the subarctic northwest Pacific at the onset of major Northern Hemisphere glaciation , 2006 .

[27]  R. Moschen,et al.  Sensitivity of biogenic silica oxygen isotopes to changes in surface water temperature and palaeoclimatology , 2005 .

[28]  F. Sandford Physical and chemical analysis of the siliceous skeletons in six sponges of two groups (demospongiae and hexactinellida) , 2003, Microscopy research and technique.

[29]  M. Brzezinski,et al.  Diminished efficiency in the oceanic silica pump caused by bacteria‐mediated silica dissolution , 2003 .

[30]  T. Coradin,et al.  Spectroscopic characterization of biogenic silica , 2003 .

[31]  F. Azam,et al.  Bacterial control of silicon regeneration from diatom detritus: Significance of bacterial ectohydrolases and species identity , 2001 .

[32]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[33]  S. Mann,et al.  Oxygen isotopes of marine diatoms and relations to opal-A maturation 1 1 Associate editor: B. Taylor , 2001 .

[34]  L. T. Zhuravlev The surface chemistry of amorphous silica. Zhuravlev model , 2000 .

[35]  F. Azam,et al.  Accelerated dissolution of diatom silica by marine bacterial assemblages , 1999, Nature.

[36]  E. Stoermer,et al.  OXYGEN ISOTOPE FRACTIONATION BETWEEN DIATOMACEOUS SILICA AND WATER , 1998 .

[37]  R. Fairbanks,et al.  Oxygen Isotopes in Biogenic Silica: Global Changes in Ocean Temperature and Isotopic Composition , 1992, Science.

[38]  R. K. Matheney,et al.  Oxygen-isotope fractionation between marine biogenic silica and seawater , 1989 .

[39]  L. Labeyrie,et al.  Temperature dependence of the oxygen isotopic fractionation between diatom silica and water , 1987 .

[40]  P. Levitz,et al.  Interaction of water with clay surfaces , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[41]  P. McMillan,et al.  A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate , 1982 .

[42]  S. Epstein,et al.  The nature of water in hydrous silica , 1982 .

[43]  L. Labeyrie,et al.  Oxygen isotopic exchangeability of diatom valve silica; interpretation and consequences for paleoclimatic studies , 1982 .

[44]  L. Labeyrie New approach to surface seawater palaeotemperatures using 18O/16O ratios in silica of diatom frustules , 1974, Nature.

[45]  J. Stolarski,et al.  Calcareous sponge biomineralization: ultrastructural and compositional heterogeneity of spicules in Leuconia johnstoni. , 2011, Journal of structural biology.

[46]  E. Rohling,et al.  Stable oxygen and carbon isotopes in foraminiferal carbonate shells , 1999 .

[47]  D. Combes,et al.  Effect of salts on dynamics of water: A Raman spectroscopy study , 1990 .

[48]  R. Mills,et al.  Self-diffusion in normal and heavy water in the range 1-45.deg. , 1973 .

[49]  J. Lewin The dissolution of silica from diatom walls , 1961 .