Singularity-induced bifurcations in lumped circuits
暂无分享,去创建一个
[1] Vaithianathan Venkatasubramanian,et al. Singularity induced bifurcation and the van der Pol oscillator , 1994 .
[2] Ricardo Riaza. On the singularity-induced bifurcation theorem , 2002, IEEE Trans. Autom. Control..
[3] Michał Tadeusiewicz,et al. Global and local stability of circuits containing MOS transistors , 2001 .
[4] R. Newcomb. The semistate description of nonlinear time-variable circuits , 1981 .
[5] Caren Tischendorf,et al. Topological index‐calculation of DAEs in circuit simulation , 1998 .
[6] Werner C. Rheinboldt,et al. On Impasse Points of Quasilinear Differential Algebraic Equations , 1994 .
[7] Ricardo Riaza,et al. Singular bifurcations in higher index differential-algebraic equations , 2002 .
[8] R. Beardmore. Double singularity-induced bifurcation points and singular Hopf bifurcations , 2000 .
[9] Alan N. Willson,et al. An algorithm for identifying unstable operating points using SPICE , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[10] C. Tischendorf,et al. Structural analysis of electric circuits and consequences for MNA , 2000 .
[11] Leon O. Chua,et al. Linear and nonlinear circuits , 1987 .
[12] Linda R. Petzold,et al. Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.
[13] An-Chang Deng,et al. Impasse points. Part I: Numerical aspects , 1989 .
[14] Michael M. Green,et al. How to identify unstable DC operating points , 1992 .
[15] F. R. Gantmakher. The Theory of Matrices , 1984 .
[16] Gunther Reissig,et al. Differential-algebraic equations and impasse points , 1996 .
[17] Leon O. Chua,et al. The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems , 1979 .
[18] S. Sastry,et al. Jump behavior of circuits and systems , 1981, CDC 1981.
[19] H. Schättler,et al. Local bifurcations and feasibility regions in differential-algebraic systems , 1995, IEEE Trans. Autom. Control..
[20] L. Chua. Dynamic nonlinear networks: State-of-the-art , 1980 .
[21] P. Rabier. The Hopf bifurcation theorem for quasilinear differential-algebraic equations , 1999 .
[22] Ricardo Riaza,et al. A matrix pencil approach to the local stability analysis of non‐linear circuits , 2004, Int. J. Circuit Theory Appl..
[23] Ricardo Riaza. Double SIB points in differential-algebraic systems , 2003, IEEE Trans. Autom. Control..
[24] Caren Tischendorf,et al. Structural analysis of electric circuits and consequences for MNA , 2000, Int. J. Circuit Theory Appl..
[25] L. Mirsky,et al. The Theory of Matrices , 1961, The Mathematical Gazette.
[26] Yang Lijun,et al. An improved version of the singularity-induced bifurcation theorem , 2001 .
[27] Feng Li,et al. Fault detection for linear analog IC-the method of short-circuit admittance parameters , 2002 .
[28] R. E. Beardmore,et al. Stability and bifurcation properties of index-1 DAEs , 1998, Numerical Algorithms.
[29] Michael Günther,et al. CAD based electric circuit modeling in industry. Pt. 1: Mathematical structure and index of network equations , 1997 .
[30] Michael Guenther,et al. CAD based electric circuit modeling in industry. Part I: Mathematical structure and index of network equations. Part II: Impact of circuit configurations and parameters , 1999 .
[31] H. Grubin. The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.
[32] R. E. Beardmore,et al. The Singularity-Induced Bifurcation and its Kronecker Normal Form , 2001, SIAM J. Matrix Anal. Appl..