Singularity-induced bifurcations in lumped circuits

A systematic analysis of singular bifurcations in semistate or differential-algebraic models of electrical circuits is presented in this paper. The singularity-induced bifurcation (SIB) theorem describes the divergence of one eigenvalue through infinity when an operating point or equilibrium locus of a parameterized differential-algebraic model crosses a singular manifold. The present paper extends this result to cover situations in which several eigenvalues diverge; we prove a multiple SIB theorem which states that a minimal rank (resp. index) change makes it possible to compute the number of diverging eigenvalues in terms of an index (resp. rank) change in the matrix pencil characterizing the linearized problem. The scope of the work comprises quasi-linear ordinary differential equations, semiexplicit index-1 differential-algebraic equation (DAEs), and Hessenberg index-2 DAEs, describing different electrical configurations. The electrical features from which singularities and, specifically, singular bifurcations stem are extensively discussed. Examples displaying simple, double, and triple SIB points illustrate different ways in which the spectrum may diverge.

[1]  Vaithianathan Venkatasubramanian,et al.  Singularity induced bifurcation and the van der Pol oscillator , 1994 .

[2]  Ricardo Riaza On the singularity-induced bifurcation theorem , 2002, IEEE Trans. Autom. Control..

[3]  Michał Tadeusiewicz,et al.  Global and local stability of circuits containing MOS transistors , 2001 .

[4]  R. Newcomb The semistate description of nonlinear time-variable circuits , 1981 .

[5]  Caren Tischendorf,et al.  Topological index‐calculation of DAEs in circuit simulation , 1998 .

[6]  Werner C. Rheinboldt,et al.  On Impasse Points of Quasilinear Differential Algebraic Equations , 1994 .

[7]  Ricardo Riaza,et al.  Singular bifurcations in higher index differential-algebraic equations , 2002 .

[8]  R. Beardmore Double singularity-induced bifurcation points and singular Hopf bifurcations , 2000 .

[9]  Alan N. Willson,et al.  An algorithm for identifying unstable operating points using SPICE , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  C. Tischendorf,et al.  Structural analysis of electric circuits and consequences for MNA , 2000 .

[11]  Leon O. Chua,et al.  Linear and nonlinear circuits , 1987 .

[12]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[13]  An-Chang Deng,et al.  Impasse points. Part I: Numerical aspects , 1989 .

[14]  Michael M. Green,et al.  How to identify unstable DC operating points , 1992 .

[15]  F. R. Gantmakher The Theory of Matrices , 1984 .

[16]  Gunther Reissig,et al.  Differential-algebraic equations and impasse points , 1996 .

[17]  Leon O. Chua,et al.  The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems , 1979 .

[18]  S. Sastry,et al.  Jump behavior of circuits and systems , 1981, CDC 1981.

[19]  H. Schättler,et al.  Local bifurcations and feasibility regions in differential-algebraic systems , 1995, IEEE Trans. Autom. Control..

[20]  L. Chua Dynamic nonlinear networks: State-of-the-art , 1980 .

[21]  P. Rabier The Hopf bifurcation theorem for quasilinear differential-algebraic equations , 1999 .

[22]  Ricardo Riaza,et al.  A matrix pencil approach to the local stability analysis of non‐linear circuits , 2004, Int. J. Circuit Theory Appl..

[23]  Ricardo Riaza Double SIB points in differential-algebraic systems , 2003, IEEE Trans. Autom. Control..

[24]  Caren Tischendorf,et al.  Structural analysis of electric circuits and consequences for MNA , 2000, Int. J. Circuit Theory Appl..

[25]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[26]  Yang Lijun,et al.  An improved version of the singularity-induced bifurcation theorem , 2001 .

[27]  Feng Li,et al.  Fault detection for linear analog IC-the method of short-circuit admittance parameters , 2002 .

[28]  R. E. Beardmore,et al.  Stability and bifurcation properties of index-1 DAEs , 1998, Numerical Algorithms.

[29]  Michael Günther,et al.  CAD based electric circuit modeling in industry. Pt. 1: Mathematical structure and index of network equations , 1997 .

[30]  Michael Guenther,et al.  CAD based electric circuit modeling in industry. Part I: Mathematical structure and index of network equations. Part II: Impact of circuit configurations and parameters , 1999 .

[31]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[32]  R. E. Beardmore,et al.  The Singularity-Induced Bifurcation and its Kronecker Normal Form , 2001, SIAM J. Matrix Anal. Appl..