Single Crystal Growth and Thermodynamic Stability of Li17Si4

Single crystals of Li17Si4 were synthesized from melts LixSi100–x (x > 85) at various temperatures and isolated by isothermal centrifugation. Li17Si4 crystallizes in the space group F43m (a = 18.7259(1) A, Z = 20). The highly air and moisture sensitive compound is isotypic with Li17Sn4. Li17Si4 represents a new compound and thus the lithium-richest phase in the binary system Li–Si superseding known Li21Si5 (Li16.8Si4). As previously shown Li22Si5 (Li17.6Si4) has been determined incorrectly. The findings are supported by theoretical calculations of the electronic structure, total energies, and structural optimizations using first-principles methods. Results from melt equilibration experiments and differential scanning calorimetry investigations suggest that Li17Si4 decomposes peritectically at 481 ± 2 °C to “Li4Si” and melt. In addition a detailed investigation of the Li–Si phase system at the Li-rich side by thermal analysis using differential scanning calorimetry is given.

[1]  Michael F Toney,et al.  In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. , 2012, ACS nano.

[2]  Martin Winter,et al.  Structural characterization of the lithium silicides Li15Si4, Li13Si4, and Li7Si3 using solid state NMR. , 2012, Physical chemistry chemical physics : PCCP.

[3]  M. Winter,et al.  Structural and dynamic characterization of Li(12)Si(7) and Li(12)Ge(7) using solid state NMR. , 2012, Solid state nuclear magnetic resonance.

[4]  Fei Gao,et al.  In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. , 2012, Nano letters.

[5]  M. Winter,et al.  Electrochemical Lithiation of Silicon Clathrate-II , 2012 .

[6]  J. Tarascon,et al.  Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.

[7]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[8]  Seung M. Oh,et al.  Performance of electrochemically generated Li21Si5 phase for lithium-ion batteries , 2010 .

[9]  T. Groy,et al.  A new phase in the system lithium–aluminum: Characterization of orthorhombic Li2Al , 2010 .

[10]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[11]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[12]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[13]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[14]  J. Richardson,et al.  X-ray and neutron diffraction studies on "Li4.4Sn". , 2003, Inorganic chemistry.

[15]  Linda F. Nazar,et al.  The true crystal structure of Li17M4 (M=Ge, Sn, Pb)-revised from Li22M5 , 2001 .

[16]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[17]  C. Svensson,et al.  Tetrahedral Stars as Flexible Basis Clusters in sp-Bonded Intermetallic Frameworks and the Compound BaLi7Al6 with the NaZn13 Structure , 1998 .

[18]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[19]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[20]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[21]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[22]  Wang,et al.  Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. , 1991, Physical review. B, Condensed matter.

[23]  H. Okamoto The Li-Si (Lithium-Silicon) system , 1990 .

[24]  Reinhard Nesper,et al.  Li21Si5, a Zintl phase as well as a Hume-Rothery phase , 1987 .

[25]  R. Nesper,et al.  Li12Si7, eine Verbindung mit trigonal‐planarem Si4‐Cluster und planaren Si5‐Ringen , 1980 .

[26]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[27]  H. Schäfer,et al.  Zur Kenntnis der Phase Li22Si5 , 1966 .

[28]  W. Klemm,et al.  Notiz über die Verbindungen zwischen Lithium und Silicium , 1955 .

[29]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .