Stochastic and chaotic relaxation oscillations

For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a third-order system admitting period doubling and chaos in a certain parameter range. The distinction between chaotic oscillation and oscillation with noise is explored. Return maps, power spectra, and Lyapunov exponents are analyzed for that purpose.

[1]  J. Grasman Asymptotic Methods for Relaxation Oscillations and Applications , 1987 .

[2]  Confinor and anti-confinor in constrained “Lorenz” system , 1987 .

[3]  Bruno Rossetto,et al.  Solutions périodiques discontinues pour l'approximation singulière d'un modèle neurophysiologique dans R4 — une métaphore dans R3 avec chaos , 1983 .

[4]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[5]  B. Huberman,et al.  Fluctuations and simple chaotic dynamics , 1982 .

[6]  Hanspeter Herzel Stabilization of Chaotic Orbits by Random Noise , 1988 .

[7]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[8]  F. Takens,et al.  On the nature of turbulence , 1971 .

[9]  N. K. Rozov,et al.  Differential Equations with Small Parameters and Relaxation Oscillations , 1980 .

[10]  W. Ebeling,et al.  The Influence of Fluctuations on Sustained Oscillations , 1985 .

[11]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[12]  Tomasz Kapitaniak,et al.  Chaos In Systems With Noise , 1988 .

[13]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[14]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[15]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[16]  W M Schaffer,et al.  Effects of noise on some dynamical models in ecology , 1986, Journal of mathematical biology.

[17]  Constrained Lorenz-like attractors , 1985 .

[18]  K. Matsumoto Noise-induced order II , 1984 .

[19]  Bruce J. West,et al.  Analogy between the Lorenz strange attractor and a bistable stochastic oscillator , 1987 .

[20]  Annette Zippelius,et al.  The effect of external noise in the Lorenz model of the Bénard problem , 1981 .