Stemming via Distribution-Based Word Segregation for Classification and Retrieval
暂无分享,去创建一个
[1] Wessel Kraaij,et al. Viewing stemming as recall enhancement , 1996, SIGIR '96.
[2] G Salton,et al. Developments in Automatic Text Retrieval , 1991, Science.
[3] Martijn Spitters,et al. Comparing feature sets for learning text categorization , 2000, RIAO.
[4] Gosse Bouma,et al. Accurate Stemming of Dutch for Text Classification , 2001, CLIN.
[5] Andrew McCallum,et al. Using Maximum Entropy for Text Classification , 1999 .
[6] Michael McGill,et al. Introduction to Modern Information Retrieval , 1983 .
[7] Ellen Riloff,et al. Little words can make a big difference for text classification , 1995, SIGIR '95.
[8] Stephen E. Fienberg,et al. Testing Statistical Hypotheses , 2005 .
[9] David D. Lewis,et al. Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval , 1998, ECML.
[10] Lillian Lee,et al. Measures of Distributional Similarity , 1999, ACL.
[11] Chris D. Paice,et al. Another stemmer , 1990, SIGF.
[12] Chris D. Paice. Method for Evaluation of Stemming Algorithms Based on Error Counting , 1996, J. Am. Soc. Inf. Sci..
[13] Thorsten Joachims,et al. Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.
[14] William R. Hersh,et al. A Comparison of Techniques for Classification and Ad Hoc Retrieval of Biomedical Documents , 2005, TREC.
[15] O. Vorobyev,et al. Discrete multivariate distributions , 2008, 0811.0406.
[16] Vibhu O. Mittal,et al. Stemming and its effects on TFIDF ranking. , 2000, SIGIR 2000.
[17] Yiming Yang,et al. A re-examination of text categorization methods , 1999, SIGIR '99.
[18] Christopher J. Fox,et al. Strength and similarity of affix removal stemming algorithms , 2003, SIGF.
[19] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[20] J. Andel. Sequential Analysis , 2022, The SAGE Encyclopedia of Research Design.
[21] Naftali Tishby,et al. Distributional Clustering of English Words , 1993, ACL.
[22] W. Bruce Croft,et al. Corpus-based stemming using cooccurrence of word variants , 1998, TOIS.
[23] Julie Beth Lovins,et al. Development of a stemming algorithm , 1968, Mech. Transl. Comput. Linguistics.
[24] Gerard Salton,et al. A vector space model for automatic indexing , 1975, CACM.
[25] José Castillo,et al. A Generalization of the Method for Evaluation of Stemming Algorithms Based on Error Counting , 2005, SPIRE.
[26] Chaomei Chen,et al. Mining the Web: Discovering knowledge from hypertext data , 2004, J. Assoc. Inf. Sci. Technol..
[27] Andrew McCallum,et al. Distributional clustering of words for text classification , 1998, SIGIR '98.
[28] Donna K. Harman,et al. How effective is suffixing? , 1991, J. Am. Soc. Inf. Sci..
[29] Robert Krovetz,et al. Viewing morphology as an inference process , 1993, Artif. Intell..
[30] Nicola Ferro,et al. A probabilistic model for stemmer generation , 2005, Inf. Process. Manag..
[31] Donna K. Harman,et al. Overview of the Third Text REtrieval Conference (TREC-3) , 1995, TREC.
[32] Dekang Lin,et al. Automatic Retrieval and Clustering of Similar Words , 1998, ACL.
[33] Martin F. Porter,et al. An algorithm for suffix stripping , 1997, Program.
[34] R. Stephenson. A and V , 1962, The British journal of ophthalmology.