A review on advances in photocatalysts towards CO2 conversion

The present situation reveals the dependence on fossil fuels, which is seriously accountable for two major impediments: (i) global warming due to increasing atmospheric carbon dioxide (CO2) and (ii) the alarming consumption of energy assets. The reduction of green CO2 in terms of producing solar fuels would be an expedient accomplishment to resolve both problems, simultaneously. The review classifies different categories of photocatalysts applied in foregoing photocatalytic CO2 conversion processes with detailed information concerning operating conditions, preparation techniques and physical properties of catalysts, radiation sources, and selectivity. The categories are concentrated on metal oxides, sulfides, phosphides, and p-type and nonmetal oxide semiconductors. In addition, their modification by doping co-metals, noble metals, transition metals and non-metals for visible light response is emphasized. Besides, for harnessing solar fuel, the recent prospect and advancement of novel sensitized catalysts by dye elements, phthalocyanines and quantum dots (QDs) are also highlighted in this review. This technology needs more efficient solar active catalysts to increase production rates as well as selectivity. The recent scenario indicates that massive prospects and opportunities still exist in this area for further investigation on catalyst selection.

[1]  Xiao-Jun Lv,et al.  Photocatalytic reduction of CO2 with H2O over a graphene-modified NiOx–Ta2O5 composite photocatalyst: coupling yields of methanol and hydrogen , 2013 .

[2]  Y. Ling,et al.  Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst , 2012 .

[3]  T. Tatsumi,et al.  Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts , 1998 .

[4]  Jimin Fan,et al.  Photo-catalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation. , 2009 .

[5]  M. Hamadanian,et al.  Preparation and characterization of S-doped TiO2 nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity , 2009 .

[6]  Qiang Ma,et al.  Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. , 2012, Angewandte Chemie.

[7]  W. Kan,et al.  Copper and cerium co-doped titanium dioxide on catalytic photo reduction of carbon dioxide with water: Experimental and theoretical studies , 2011 .

[8]  S. Nozaki,et al.  Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O , 2002 .

[9]  Zhihuan Zhao,et al.  Photo-catalytic CO2 reduction using sol–gel derived titania-supported zinc-phthalocyanine , 2007 .

[10]  C. Yuan,et al.  Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor , 2007 .

[11]  Claudio Ampelli,et al.  Synthesis of solar fuels by a novel photoelectrocatalytic approach , 2010 .

[12]  A. Kudo,et al.  Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. , 2011, Journal of the American Chemical Society.

[13]  Feng Xin,et al.  Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts. , 2011, Journal of colloid and interface science.

[14]  E. Akkaya,et al.  Dye sensitized CO2 reduction over pure and platinized TiO2 , 2007 .

[15]  Saad Mekhilef,et al.  A review on palm oil biodiesel as a source of renewable fuel , 2011 .

[16]  Prathamesh Pavaskar,et al.  Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions , 2011 .

[17]  H. García,et al.  Microsecond charge separation upon photoexcitation of gold nanoparticles in imidazolium ionic liquids. , 2009, Dalton transactions.

[18]  O. Ishitani,et al.  Photochemical reduction of CO₂ using TiO₂: effects of organic adsorbates on TiO₂ and deposition of Pd onto TiO₂. , 2011, ACS applied materials & interfaces.

[19]  Lucie Obalová,et al.  Effect of TiO2 particle size on the photocatalytic reduction of CO2 , 2009 .

[20]  Liping Li,et al.  High purity anatase TiO(2) nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. , 2005, Journal of the American Chemical Society.

[21]  C. Xiao,et al.  Effects of I and F codoped TiO2 on the photocatalytic degradation of methylene blue , 2009 .

[22]  Jianqiang Yu,et al.  Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4 , 2006 .

[23]  Shaohua Liu,et al.  Optimal design and preparation of titania-supported CoPc using sol―gel for the photo-reduction of CO2 , 2009 .

[24]  S. Tajima,et al.  Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer. , 2011, Chemical communications.

[25]  M. Gondal,et al.  Selective laser enhanced photocatalytic conversion of CO2 into methanol , 2004 .

[26]  W. Li,et al.  Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts , 2012 .

[27]  Koji Takeuchi,et al.  Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal , 2000 .

[28]  A. Russell,et al.  Review of recent advances in carbon dioxide separation and capture , 2013 .

[29]  M. Antonietti,et al.  Focused radiation heating for controlled high temperature chemistry, exemplified with the preparation of vanadium nitride nanoparticles , 2013 .

[30]  Wenguang Tu,et al.  Hexagonal Nanoplate-Textured Micro-Octahedron Zn2SnO4: Combined Effects toward Enhanced Efficiencies of Dye-Sensitized Solar Cell and Photoreduction of CO2 into Hydrocarbon Fuels , 2012 .

[31]  Yong Zhou,et al.  Zn2GeO4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO2 into CH4 under visible light after nitridation , 2012 .

[32]  V. Matějka,et al.  Comparison of the pure TiO2 and kaolinite/TiO2 composite as catalyst for CO2 photocatalytic reduction , 2011 .

[33]  M. Hirota,et al.  CO2 Reforming Performance and Visible Light Responsibility of Cr-Doped TiO2 Prepared by Sol-Gel and Dip-Coating Method , 2010 .

[34]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[35]  J. Lehn,et al.  Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Pratim Biswas,et al.  Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts , 2010 .

[37]  Andrew B. Bocarsly,et al.  Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. , 2008, Journal of the American Chemical Society.

[38]  N. Dimitrijević,et al.  Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. , 2011, Journal of the American Chemical Society.

[39]  Xiaogang Zhang,et al.  Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode , 2005 .

[40]  B. Ferrer,et al.  Photochemistry of gold nanoparticles functionalized with an iron(II) terpyridine complex. An integrated visible light photocatalyst for hydrogen generation. , 2009, Dalton transactions.

[41]  Li Xue,et al.  Preparation of C Doped TiO2 Photocatalysts and their Photocatalytic Reduction of Carbon Dioxide , 2011 .

[42]  Peidong Yang,et al.  Semiconductor Nanowires for Artificial Photosynthesis , 2014 .

[43]  K. Kočí,et al.  Preparation and characterization of ZnS nanoparticles deposited on montmorillonite. , 2010, Journal of colloid and interface science.

[44]  P. Christensen,et al.  Carbon dioxide formation during initial stages of photodegradation of poly(ethyleneterephthalate) (PET) films , 2009 .

[45]  P. Webley,et al.  CO2 capture at elevated temperatures by cyclic adsorption processes , 2012 .

[46]  K. Kočí,et al.  Photocatalytic reduction of CO2 over TiO2 based catalysts , 2008 .

[47]  H. Yoneyama,et al.  Photocatalytic reduction of carbon dioxide in the presence of nitrate using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices , 1998 .

[48]  Kelly Chance,et al.  Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions. , 2005, Faraday discussions.

[49]  I-Hsiang Tseng,et al.  Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts , 2002 .

[50]  Hao Ming Chen,et al.  Ni@NiO Core–Shell Structure-Modified Nitrogen-Doped InTaO4 for Solar-Driven Highly Efficient CO2 Reduction to Methanol , 2011 .

[51]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[52]  Theodosios Korakianitis,et al.  A projection of energy consumption and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics , 2013 .

[53]  N. Gokon,et al.  Photocatalytic effect of ZnO on carbon gasification with CO2 for high temperature solar thermochemistry , 2003 .

[54]  K. Ohta,et al.  Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide , 1994 .

[55]  H. Arakawa,et al.  Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over zirconia catalyst , 1993 .

[56]  Kamal Kishore,et al.  Photo-catalytic reduction of carbon dioxide to methane using TiO2 as suspension in water , 2004 .

[57]  K. Kočí,et al.  Influence of reactor geometry on the yield of CO2 photocatalytic reduction , 2011 .

[58]  Liejin Guo,et al.  Metal sulphide semiconductors for photocatalytic hydrogen production , 2013 .

[59]  S. Dutta Catalytic materials that improve selectivity of biomass conversions , 2012 .

[60]  Yong Zhou,et al.  High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. , 2010, Journal of the American Chemical Society.

[61]  H. Yoneyama,et al.  Photoreduction of carbon dioxide using chalcogenide semiconductor microcrystals , 1995 .

[62]  Yong Zhou,et al.  High-yield synthesis of ultrathin and uniform Bi₂WO₆ square nanoplates benefitting from photocatalytic reduction of CO₂ into renewable hydrocarbon fuel under visible light. , 2011, ACS applied materials & interfaces.

[63]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[64]  W. Choi,et al.  Nafion layer-enhanced photosynthetic conversion of CO2 into hydrocarbons on TiO2 nanoparticles , 2012 .

[65]  S. Dunn,et al.  LiNbO3—A Polar Material for Solid-Gas Artificial Photosynthesis , 2011 .

[66]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[67]  Akira Fujishima,et al.  PHOTOELECTROCHEMICAL REDUCTION OF CO2 IN A HIGH-PRESSURE CO2 + METHANOL MEDIUM AT P-TYPE SEMICONDUCTOR ELECTRODES , 1998 .

[68]  Tsunehiro Tanaka,et al.  Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2 , 2000 .

[69]  A. B. M. Shawkat Ali,et al.  Prospects of renewable energy – a feasibility study in the Australian context , 2012 .

[70]  S. Pratsinis,et al.  PHOTOCATALYTIC DESTRUCTION OF PHENOL AND SALICYLIC ACID WITH AEROSOL-MADE AND COMMERCIAL TITANIA POWDERS , 1996 .

[71]  M. Anpo,et al.  Photocatalytic Reduction of CO2 with H2O on Ti−β Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties , 2001 .

[72]  Aicheng Chen,et al.  A facile approach to synthesize N and B co-doped TiO2 nanomaterials with superior visible-light response , 2010 .

[73]  Dong Liu,et al.  Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor , 2011 .

[74]  Y. Nakato,et al.  An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Modification with Small Metal Particles , 1998 .

[75]  Sang-Eon Park,et al.  Photoreduction of Carbondioxide on Surface Functionalized Nanoporous Catalysts , 2005 .

[76]  G. Mul,et al.  Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15 , 2011 .

[77]  John T. S. Irvine,et al.  Factors affecting the photoelectrochemical fixation of carbon dioxide with semiconductor colloids , 1998 .

[78]  J. Wu,et al.  Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight , 2008 .

[79]  Tsunehiro Tanaka,et al.  Photocatalytic Reduction of CO2 to CO in the Presence of H2 or CH4 as a Reductant over MgO , 2004 .

[80]  L. Matějová,et al.  Preparation and characterization of Ag-doped crystalline titania for photocatalysis applications , 2012 .

[81]  P. Christensen,et al.  Rapid measurement of polymer photo-degradation by FTIR spectrometry of evolved carbon dioxide , 2006 .

[82]  F. Solymosi,et al.  Photocatalytic reaction of H2O+CO2 over pure and doped Rh/TiO2 , 1994 .

[83]  Yu‐Wen Chen,et al.  Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation , 2007 .

[84]  Vinay Gupta,et al.  Photo-conversion of CO2 using titanium dioxide: enhancements by plasmonic and co-catalytic nanoparticles , 2013, Nanotechnology.

[85]  G. El-Bahy,et al.  Ultraviolet and visible spectroscopic studies of phthalocyanine and its complexes thin films , 2006 .

[86]  Yuichi Ichihashi,et al.  Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Anchored within Micropores of Zeolites: Effects of the Structure of the Active Sites and the Addition of Pt , 1997 .

[87]  Ying Li,et al.  Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels , 2011 .

[88]  N. English,et al.  First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatase-titania , 2009 .

[89]  A. Sammells,et al.  Photoelectrochemical Carbon Dioxide Reduction to Hydrocarbons at Ambient Temperature and Pressure , 1988 .

[90]  Verena Kaltenhauser,et al.  Exploring polymer/nanoparticle hybrid solar cells in tandem architecture , 2013 .

[91]  Kazunari Domen,et al.  New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light , 2007 .

[92]  Young Ku,et al.  Photocatalytic degradation of gaseous benzene in air streams by using an optical fiber photoreactor , 2003 .

[93]  K. Ohta,et al.  Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium , 1997 .

[94]  N. Alonso‐Vante,et al.  A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity , 1999 .

[95]  T. Hirose,et al.  Photocatalytic carbon dioxide photoreduction by Co(bpy)32+ sensitized by Ru(bpy)32+ fixed to cation exchange polymer , 2003 .

[96]  J. Wu,et al.  Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to Methanol , 2009 .

[97]  Lei Xie,et al.  The impact of silver modification on the catalytic activity of iodine-doped titania for p-chlorophenol degradation under visible-light irradiation , 2010 .

[98]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[99]  E. Aydil,et al.  Hot-Electron Transfer from Semiconductor Nanocrystals , 2010, Science.

[100]  H. Balat,et al.  Hydrogen from biomass – Present scenario and future prospects , 2010 .

[101]  Jonathan W. Lekse,et al.  Synthesis, Characterization, Electronic Structure, and Photocatalytic Behavior of CuGaO2 and CuGa1–xFexO2 (x = 0.05, 0.10, 0.15, 0.20) Delafossites , 2012 .

[102]  L. Yuliati,et al.  Photocatalytic conversion of methane and carbon dioxide over gallium oxide , 2008 .

[103]  M. Jaroniec,et al.  Characterization of the Porous Structure of SBA-15 , 2000 .

[104]  Congjun Wang,et al.  Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts , 2011 .

[105]  J. Wu,et al.  Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction , 2004 .

[106]  Yu‐Wen Chen,et al.  Photocatalytic reduction of carbon dioxide with water using InNbO4 catalyst with NiO and Co3O4 cocatalysts , 2012 .

[107]  Lucie Obalová,et al.  Effect of silver doping on the TiO2 for photocatalytic reduction of CO2 , 2010 .

[108]  J. Wu,et al.  Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor , 2008 .

[109]  H. Kisch,et al.  Photoreduction of carbon dioxide catalysed by free and supported zinc and cadmium sulphide powders , 1997 .

[110]  Muhammad Tahir,et al.  Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels , 2013 .

[111]  Hironori Arakawa,et al.  Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst , 2001, Nature.

[112]  J. Wu,et al.  Chemical states of metal-loaded titania in the photoreduction of CO2 , 2004 .

[113]  T. Vinh,et al.  Preparation of bio-fuels by catalytic cracking reaction of vegetable oil sludge , 2011 .

[114]  T. Kajino,et al.  Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. , 2010, Angewandte Chemie.

[115]  Y. Wada,et al.  Effect of Surface Structures on Photocatalytic CO2 Reduction Using Quantized CdS Nanocrystallites , 1997 .

[116]  Jianfeng Chen,et al.  Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photo-catalytic reduction efficiency study under simulated solar radiation conditions , 2012 .

[117]  E. Fazio,et al.  Synthesis and physico-chemical characterization of Au/TiO2 nanostructures formed by novel “cold” and “hot” nanosoldering of Au and TiO2 nanoparticles dispersed in water , 2011 .

[118]  Ruzhu Wang,et al.  Simulation and parameter analysis of a two-stage desiccant cooing/heating system driven by solar air collectors , 2013 .

[119]  Huiling Li,et al.  Photoreduction of CO2 to methanol over Bi2S3/CdS photocatalyst under visible light irradiation , 2011 .

[120]  R. Naidu,et al.  Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review , 2009 .

[121]  J. Wu,et al.  Photoreduction of CO2 in an optical-fiber photoreactor: Effects of metals addition and catalyst carrier , 2008 .

[122]  Ying Dai,et al.  Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst , 2009 .

[123]  M. Halmann,et al.  Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells , 1978, Nature.

[124]  H. Jüntgen Activated carbon as catalyst support: A review of new research results☆ , 1986 .

[125]  Somnath C. Roy,et al.  Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. , 2010, ACS nano.

[126]  F. Solymosi,et al.  Effects of variation of electric properties of TiO2 support on hydrogenation of CO and CO2 over Rh catalysts , 1985 .

[127]  Z. Zou,et al.  Photophysical and photocatalytic properties of ANbO3 (A=Na, K) photocatalysts , 2012 .

[128]  R. Van Grieken,et al.  Synthesis of size-controlled silica-supported TiO2 photocatalysts , 2002 .

[129]  J. E. Lyons,et al.  Catalysis research of relevance to carbon management: progress, challenges, and opportunities. , 2001, Chemical reviews.

[130]  John P. Baltrus,et al.  Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts , 2009 .

[131]  B. Aurian‐Blajeni,et al.  Electrochemical measurement on the photoelectrochemical reduction of aqueous carbon dioxide on p-Gallium phosphide and p-Gallium arsenide semiconductor electrodes , 1983 .

[132]  Y. Wada,et al.  Surface Characteristics of ZnS Nanocrystallites Relating to Their Photocatalysis for CO2 Reduction1 , 1998 .

[133]  A. H. Shamsuddin,et al.  Advances in the integration of solar thermal energy with conventional and non-conventional power plants , 2013 .

[134]  Li Wang,et al.  Photoisomerization of Norbornadiene to Quadricyclane Using Transition Metal Doped TiO2 , 2010 .

[135]  Christian Amatore,et al.  Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability , 1981 .

[136]  R. Neumann,et al.  Photoreduction of carbon dioxide to carbon monoxide with hydrogen catalyzed by a rhenium(I) phenanthroline-polyoxometalate hybrid complex. , 2011, Journal of the American Chemical Society.

[137]  Jinhua Ye,et al.  Ion-exchange synthesis of a micro/mesoporous Zn2GeO4 photocatalyst at room temperature for photoreduction of CO2. , 2011, Chemical communications.

[138]  Chun He,et al.  Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light , 2011 .

[139]  Michael Dittmar,et al.  Nuclear energy: Status and future limitations , 2012 .

[140]  Giacomo Vitarelli,et al.  Comparison of the UV-degradation chemistry of polypropylene, polyethylene, polyamide 6 and polybutylene terephthalate , 1999 .

[141]  Bruce A. Parkinson,et al.  Photoelectrochemical pumping of enzymatic CO2 reduction , 1984, Nature.

[142]  P. Lianos,et al.  Photooxidation Products of Ethanol During Photoelectrochemical Operation Using a Nanocrystalline Titania Anode and a Two Compartment Chemically Biased Cell , 2009 .

[143]  Hiroyuki Yasuda,et al.  Transformation of carbon dioxide. , 2007, Chemical reviews.

[144]  Timothy R. Cook,et al.  Solar energy supply and storage for the legacy and nonlegacy worlds. , 2010, Chemical reviews.

[145]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[146]  Zhigang Xie,et al.  Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. , 2011, Journal of the American Chemical Society.

[147]  K. Asai,et al.  Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light , 2004 .

[148]  Paitoon Tontiwachwuthikul,et al.  Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams , 2006 .

[149]  J. Popić,et al.  Reduction of carbon dioxide on ruthenium oxide and modified ruthenium oxide electrodes in 0.5 M NaHCO3 , 1997 .

[150]  G. Guan,et al.  Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst , 2003 .

[151]  Suhuai Wei,et al.  Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. , 2009, Physical review letters.

[152]  Shuxin Ouyang,et al.  Nano‐photocatalytic Materials: Possibilities and Challenges , 2012, Advanced materials.

[153]  Jinlong Zhang,et al.  Recent advances in visible light-responsive titanium oxide-based photocatalysts , 2010 .

[154]  Hajime Haneda,et al.  Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde , 2005 .

[155]  Osamu Ishitani,et al.  Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2 , 1993 .

[156]  Gabor A. Somorjai,et al.  The photoassisted reaction of gaseous water and carbon dioxide adsorbed on the SrTiO3 (111) crystal face to form methane , 1978 .

[157]  G. Lu,et al.  Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. , 2011, Chemical communications.

[158]  Detlef W. Bahnemann,et al.  Photocatalytic water treatment: solar energy applications , 2004 .

[159]  D. I. Kondarides,et al.  Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions , 2009 .

[160]  K. Dwight,et al.  Surface Acidity and Photocatalytic Activity of TiO2, WO3/TiO2, and MoO3/TiO2 Photocatalysts , 1994 .

[161]  T. Kajino,et al.  Direct assembly synthesis of metal complex-semiconductor hybrid photocatalysts anchored by phosphonate for highly efficient CO2 reduction. , 2011, Chemical communications.

[162]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.

[163]  T. Xie,et al.  Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2 , 2001 .

[165]  Andrew A. Lacis,et al.  Atmospheric CO2: Principal Control Knob Governing Earth’s Temperature , 2010, Science.

[166]  Kwanghee Lee,et al.  Seamless polymer solar cell module architecture built upon self-aligned alternating interfacial layers , 2013 .

[167]  Hung Ji Huang,et al.  Application of Optical-fiber Photoreactor for CO2 Photocatalytic Reduction , 2008 .

[168]  H. Yoneyama,et al.  Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents , 1998 .

[169]  Jiaguo Yu,et al.  Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .

[170]  A. Panacek,et al.  CdS nanoparticles deposited on montmorillonite: preparation, characterization and application for photoreduction of carbon dioxide. , 2011, Journal of colloid and interface science.

[171]  P. Biswas,et al.  Rapid synthesis of nanostructured Cu–TiO2–SiO2 composites for CO2 photoreduction by evaporation driven self-assembly , 2011 .

[172]  K. Sivula Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis. , 2013, The journal of physical chemistry letters.

[173]  Y. Shimizu,et al.  Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2 , 1999 .

[174]  I. Omae Recent developments in carbon dioxide utilization for the production of organic chemicals , 2012 .

[175]  K. Hashimoto,et al.  Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst , 2003 .

[176]  Yubao Zhao,et al.  Preparation and characterization of N–I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation , 2009 .

[177]  Jarnuzi Gunlazuardi,et al.  Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method , 2005 .

[178]  A. Mohamed,et al.  Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation , 2013 .

[179]  Elias Stathatos,et al.  Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water ☆ , 2009 .

[180]  K. Ohta,et al.  Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and p-type indium phosphide electrodes in methanol , 2006 .

[181]  Yan-Gu Lin,et al.  Hierarchical Cu2O photocathodes with nano/microspheres for solar hydrogen generation , 2012 .

[182]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[183]  Yuichi Ichihashi,et al.  Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts , 1995 .

[184]  Ying Yu,et al.  Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O , 2007 .

[185]  Elias Stathatos,et al.  Pure versus metal-ion-doped nanocrystalline titania for photocatalysis , 2007 .

[186]  M. Qamar IMPROVED PHOTOCATALYTIC ACTIVITY OF SURFACE MODIFIED TiO2 WITH PLATINUM , 2010 .

[187]  Meiling Sun,et al.  Embedded CdS nanorod arrays in PbS absorber layers: enhanced energy conversion efficiency in bulk heterojunction solar cells , 2014 .

[188]  Eric Hu,et al.  Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets , 2006 .

[189]  N. S. Amin,et al.  Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites , 2013 .

[190]  F. Krebs,et al.  Flexible substrates as basis for photocatalytic reduction of carbon dioxide , 2011 .

[191]  M. López-Muñoz,et al.  Role of the support on the activity of silica-supported TiO2 photocatalysts: Structure of the TiO2/SBA-15 photocatalysts , 2005 .

[192]  R. M. Lambert,et al.  Effective visible light-activated B-doped and B,N-codoped TiO2 photocatalysts. , 2007, Journal of the American Chemical Society.

[193]  J. Wu Photocatalytic Reduction of Greenhouse Gas CO2 to Fuel , 2009 .

[194]  M. Anpo,et al.  Synthesis of transparent Ti-containing mesoporous silica thin film materials and their unique photocatalytic activity for the reduction of CO2 with H2O , 2003 .

[195]  Z. Zou,et al.  Facile temperature-controlled synthesis of hexagonal Zn2GeO4 nanorods with different aspect ratios toward improved photocatalytic activity for overall water splitting and photoreduction of CO2. , 2011, Chemical communications.

[196]  H. Frei,et al.  Mechanistic Study of CO2 Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy , 2000 .

[197]  Hiromi Yamashita,et al.  Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts , 2012 .

[198]  Erwin Reisner,et al.  Efficient and clean photoreduction of CO(2) to CO by enzyme-modified TiO(2) nanoparticles using visible light. , 2010, Journal of the American Chemical Society.

[199]  K. Hashimoto,et al.  Hydrophilicity on carbon-doped TiO2 thin films under visible light , 2006 .

[200]  A. Miotello,et al.  Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst , 2009 .

[201]  Jinhua Ye,et al.  The Effects of Crystal Structure and Electronic Structure on Photocatalytic H2 Evolution and CO2 Reduction over Two Phases of Perovskite-Structured NaNbO3 , 2012 .

[202]  S. Martin,et al.  Mineral-assisted pathways in prebiotic synthesis: photoelectrochemical reduction of carbon(+IV) by manganese sulfide. , 2004, Journal of the American Chemical Society.

[203]  M. Grätzel,et al.  Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure , 1987, Nature.

[204]  E. Stefanakos,et al.  Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2 , 2006 .

[205]  Elizabeth Pierce,et al.  CO2 photoreduction at enzyme-modified metal oxide nanoparticles , 2011 .

[206]  N. Panwar,et al.  Role of renewable energy sources in environmental protection: A review , 2011 .

[207]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[208]  A. Kudo,et al.  Photocatalytic Hydrogen Evolution on ZnS−CuInS2−AgInS2 Solid Solution Photocatalysts with Wide Visible Light Absorption Bands , 2006 .

[209]  X. Gong,et al.  Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction , 2010 .