openPrimeR for multiplex amplification of highly diverse templates

To study the diversity of immune receptors and pathogens, multiplex PCR has become a central approach in research and diagnostics. However, insufficient primer design against highly diverse templates often prevents amplification and therefore limits the correct understanding of biological processes. Here, we present openPrimeR, an R-based tool for evaluating and designing multiplex PCR primers. openPrimeR provides a functional and intuitive interface and uses either a greedy algorithm or an integer linear program to compute the minimal set of primers that performs full target coverage. As proof of concept, we used openPrimeR to find optimal primer sets for the amplification of highly mutated immunoglobulins. Comprehensive analyses on specifically generated immunoglobulin variable gene segment libraries resulted in the composition of highly effective primer sets (oPR-IGHV, oPR-IGKV and oPR-IGLV) that demonstrated to be particularly suitable for the isolation of novel human antibodies.

[1]  George Georgiou,et al.  High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire , 2013, Nature Biotechnology.

[2]  Marie-Paule Lefranc,et al.  IMGT, the international ImMunoGeneTics database. , 1997, Nucleic acids research.

[3]  Hiroyuki Kishi,et al.  Amplification and analysis of cDNA generated from a single cell by 5'-RACE: application to isolation of antibody heavy and light chain variable gene sequences from single B cells. , 2006, BioTechniques.

[4]  Ali Bashir,et al.  Optimization of primer design for the detection of variable genomic lesions in cancer , 2007, Bioinform..

[5]  W. Rychlik,et al.  OLIGO 7 primer analysis software. , 2007, Methods in molecular biology.

[6]  Simon N. Jarman,et al.  Amplicon: software for designing PCR primers on aligned DNA sequences , 2004, Bioinform..

[7]  Cheng-Yan Kao,et al.  Integrated minimum-set primers and unique probe design algorithms for differential detection on symptom-related pathogens , 2005, Bioinform..

[8]  Beatrix Ueberheide,et al.  Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies , 2013, The Journal of experimental medicine.

[9]  A. Ward,et al.  Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer , 2015, Biomolecules.

[10]  Andrew D. Ellington,et al.  Antibody Repertoires in Humanized NOD-scid-IL2Rγnull Mice and Human B Cells Reveals Human-Like Diversification and Tolerance Checkpoints in the Mouse , 2012, PloS one.

[11]  Timothy Rose,et al.  CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design , 2003, Nucleic Acids Res..

[12]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[13]  Simon Kasif,et al.  MuPlex: multi-objective multiplex PCR assay design , 2005, Nucleic Acids Res..

[14]  David Kipling,et al.  High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. , 2010, Blood.

[15]  Lynn Morris,et al.  Broad neutralization by a combination of antibodies recognizing the CD4 binding site and a new conformational epitope on the HIV-1 envelope protein , 2012, The Journal of experimental medicine.

[16]  David A. Hysom,et al.  Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes , 2014, Adv. Bioinformatics.

[17]  J. Reichert,et al.  Antibodies to watch in 2018 , 2018, mAbs.

[18]  Sri Ram,et al.  Exploiting extension bias in polymerase chain reaction to improve primer specificity in ensembles of nearly identical DNA templates. , 2014, Environmental Microbiology.

[19]  Zoltán Konthur,et al.  V-gene amplification revisited - An optimised procedure for amplification of rearranged human antibody genes of different isotypes. , 2010, New biotechnology.

[20]  S. Hammer,et al.  The challenge of HIV-1 subtype diversity. , 2008, The New England journal of medicine.

[21]  Hedda Wardemann,et al.  Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen , 2018, Nature Immunology.

[22]  C. Kuiken,et al.  HIV sequence databases. , 2003, AIDS reviews.

[23]  Yu-Huei Cheng,et al.  URPD: a specific product primer design tool , 2012, BMC Research Notes.

[24]  Jain-Shing Wu,et al.  MultiPrimer: software for multiplex primer design. , 2006, Applied bioinformatics.

[25]  Scott J. Emrich,et al.  PROBEmer: a web-based software tool for selecting optimal DNA oligos , 2003, Nucleic Acids Res..

[26]  Peter L. Williams,et al.  Multiplex primer prediction software for divergent targets , 2009, Nucleic acids research.

[27]  Joachim Büch,et al.  geno2pheno[ngs-freq]: a genotypic interpretation system for identifying viral drug resistance using next-generation sequencing data , 2018, Nucleic Acids Res..

[28]  Nicolas Le Novère,et al.  MELTING, computing the melting temperature of nucleic acid duplex. , 2001, Bioinformatics.

[29]  Rita Casadio,et al.  Algorithms in Bioinformatics, 5th International Workshop, WABI 2005, Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, WABI.

[30]  Noga Alon,et al.  Algorithmic construction of sets for k-restrictions , 2006, TALG.

[31]  Michael Zuker,et al.  UNAFold: software for nucleic acid folding and hybridization. , 2008, Methods in molecular biology.

[32]  K. Rajewsky,et al.  Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. , 1993, The EMBO journal.

[33]  Michel C Nussenzweig,et al.  Amplification of highly mutated human Ig lambda light chains from an HIV-1 infected patient. , 2015, Journal of immunological methods.

[34]  Florian Klein,et al.  Antibodies in HIV-1 Vaccine Development and Therapy , 2013, Science.

[35]  Ning Ma,et al.  IgBLAST: an immunoglobulin variable domain sequence analysis tool , 2013, Nucleic Acids Res..

[36]  Ron Diskin,et al.  Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding , 2011, Science.

[37]  Michael S. Seaman,et al.  Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117 , 2015, Nature.

[38]  Peter L. Williams,et al.  Skip the Alignment: Degenerate, Multiplex Primer and Probe Design Using K-mer Matching Instead of Alignments , 2012, PloS one.

[39]  Ruslan Kalendar,et al.  FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. , 2014, Methods in molecular biology.

[40]  Robert Giegerich,et al.  GeneFisher-Software Support for the Detection of Postulated Genes , 1996, ISMB.

[41]  Wen Wang,et al.  MPprimer: a program for reliable multiplex PCR primer design , 2010, BMC Bioinformatics.

[42]  Thomas Kämpke,et al.  Efficient primer design algorithms , 2001, Bioinform..

[43]  Tongqing Zhou,et al.  Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01 , 2010, Science.

[44]  S. Henikoff,et al.  Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. , 1998, Nucleic acids research.

[45]  Nico Pfeifer,et al.  Safety and anti-viral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals , 2018, Nature Medicine.

[46]  Ying Sun,et al.  Degenerate primer design to clone the human repertoire of immunoglobulin heavy chain variable regions , 2011, World Journal of Microbiology and Biotechnology.

[47]  T. D. Schneider,et al.  Consensus sequence Zen. , 2002, Applied bioinformatics.

[48]  Yoshiaki Nishimura,et al.  A single injection of crystallizable fragment domain–modified antibodies elicits durable protection from SHIV infection , 2018, Nature Medicine.

[49]  Hedda Wardemann,et al.  Direct high‐throughput amplification and sequencing of immunoglobulin genes from single human B cells , 2015, European journal of immunology.

[50]  Thomas Lengauer,et al.  Geno2pheno: Interpreting Genotypic HIV Drug Resistance Tests , 2001, IEEE Intell. Syst..

[51]  Qing Zhu,et al.  Rapid development of broadly influenza neutralizing antibodies through redundant mutations , 2014, Nature.

[52]  M. Nussenzweig,et al.  Predominant Autoantibody Production by Early Human B Cell Precursors , 2003, Science.

[53]  Ron Shamir,et al.  The Degenerate Primer Design Problem , 2002, ISMB.

[54]  Weixiong Zhang,et al.  Selecting Degenerate Multiplex PCR Primers , 2003, WABI.

[55]  Steven H. Kleinstein,et al.  Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data , 2015, Bioinform..

[56]  W. Ian Lipkin,et al.  Greene SCPrimer: a rapid comprehensive tool for designing degenerate primers from multiple sequence alignments , 2006, Nucleic acids research.

[57]  Ben Murrell,et al.  Antibody 10-1074 suppresses viremia in HIV-1-infected individuals , 2017, Nature Medicine.

[58]  Eleanor Barnes,et al.  Approaches, Progress, and Challenges to Hepatitis C Vaccine Development , 2019, Gastroenterology.

[59]  Johannes Trück,et al.  BCR repertoire sequencing: different patterns of B cell activation after two Meningococcal vaccines , 2015, Immunology and cell biology.

[60]  Dong Xu,et al.  Genome-scale probe and primer design with PRIMEGENS. , 2007, Methods in molecular biology.

[61]  Nico Pfeifer,et al.  Modeling the Amplification of Immunoglobulins through Machine Learning on Sequence-Specific Features , 2019, Scientific Reports.

[62]  Tomoyuki Yamada,et al.  PrimerStation: a highly specific multiplex genomic PCR primer design server for the human genome , 2006, Nucleic Acids Res..

[63]  G. Pesole,et al.  GeneUp: a program to select short PCR primer pairs that occur in multiple members of sequence lists. , 1998, BioTechniques.

[64]  Michel C Nussenzweig,et al.  Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. , 2008, Journal of immunological methods.

[65]  D. Sblattero,et al.  A definitive set of oligonucleotide primers for amplifying human V regions. , 1998, Immunotechnology : an international journal of immunological engineering.

[66]  Yingxin Han,et al.  Clonal Characteristics of Circulating B Lymphocyte Repertoire in Primary Biliary Cholangitis , 2016, The Journal of Immunology.

[67]  Nico Pfeifer,et al.  Combination therapy with anti-HIV-1 antibodies maintains viral suppression , 2018, Nature.

[68]  David A. Hafler,et al.  pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires , 2014, Bioinform..

[69]  Damien M. O’Halloran,et al.  PrimerMapper: high throughput primer design and graphical assembly for PCR and SNP detection , 2016, Scientific Reports.

[70]  Wing-Kin Sung,et al.  G-PRIMER: greedy algorithm for selecting minimal primer set , 2004, Bioinform..