Comparison of the salt-dependent self-association of brain and erythroid spectrin.

The self-association of ovine brain spectrin in 0.1-1.5 M NaCl (pH 7.5) was studied using sedimentation velocity and sedimentation equilibrium techniques. Brain spectrin is tetrameric at sedimentation equilibrium at a 0.13 M ionic strength at 18-37 degrees C and at ionic strengths of up to 0.33 M at 20 degrees C. At ionic strengths greater than 0.33 M at 20 degrees C, the brain spectrin tetramer is destabilized, resulting in both dissociation to dimers and indefinite association to higher oligomers, in a manner similar to that seen with erythroid spectrin. The equilibrium constants describing all steps in the association involving the addition of dimers are around 15-fold higher for brain spectrin than for erythroid spectrin, at ionic strengths of > or = 0.43 M. We propose that the stronger association of brain spectrin compared to that of erythroid spectrin is due to a relative inability of brain spectrin to form closed dimers. Sedimentation velocity analysis confirms that brain spectrin readily forms open dimers and that the association of open dimers is not kinetically trapped even at 2 degrees C. Our results suggest that the destabilization of spectrin tetramers in high-ionic strength conditions is due to increased independent movement of the alpha and beta subunits resulting from disruption of electrostatic interactions. The greater stability of brain spectrin oligomers relative to those of erythroid spectrin is due to stronger nonelectrostatic interactions which stabilize the rigidity of the individual subunits and thereby increase the conformational strain associated with dimer closure.