Hydrogeological Decision Analysis: 1. A Framework

This paper is the first in a four-part series that describes the application of decision analysis to engineering design for projects in which the hydrogeological environment plays an important role. The methodology is well-suited to the design of containment facilities at new waste-management facilities, purge-well networks in contaminant remediation applications, or drainage systems in geotechnical projects. It is based on a risk-based philosophy of engineering design. It involves the coupling of three separate models: a decision model based on a risk-cost-benefit objective function, a simulation model for ground-water flow and transport, and an uncertainty model that encompasses both geological uncertainty and parameter uncertainty. The approach can be used for the comparison of alternative engineered components of a system, for the design of monitoring systems, and for the assessment of data worth in the design of site investigation programs. This first paper lays the framework; the subsequent papers escribe how the methods can be applied in geotechnical and waste-management applications.

[1]  G. Dagan Statistical Theory of Groundwater Flow and Transport: Pore to Laboratory, Laboratory to Formation, and Formation to Regional Scale , 1986 .

[2]  E. G. Vomvoris,et al.  A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one‐dimensional simulations , 1983 .

[3]  A. Mantoglou,et al.  The Turning Bands Method for simulation of random fields using line generation by a spectral method , 1982 .

[4]  Chester C. Kisiel,et al.  Worth of additional data to a digital computer model of a groundwater basin , 1974 .

[5]  Joel Massmann,et al.  Groundwater contamination from waste management sites: The interaction between risk‐based engineering design and regulatory policy: 1. Methodology , 1987 .

[6]  Peter K. Kitanidis,et al.  Analysis of the Spatial Structure of Properties of Selected Aquifers , 1985 .

[7]  R. Allan Freeze,et al.  Updating random hydraulic conductivity fields: A two‐step procedure , 1989 .

[8]  Tien H. Wu,et al.  Uncertainty, Safety, and Decision in Soil Engineering , 1974 .

[9]  P. A. Domenico,et al.  Alternative Boundaries in Solid Waste Management , 1982 .

[10]  Lynn W. Gelhar,et al.  Stochastic Analysis of Flow in Heterogeneous Porous Media , 1984 .

[11]  Robert A. Young,et al.  The temporal allocation of ground water—A simulation approach , 1970 .

[12]  Dennis McLaughlin,et al.  Stochastic analysis of nonstationary subsurface solute transport: 1. Unconditional moments , 1989 .

[13]  Andre G. Journel,et al.  The Place of Non-Parametric Geostatistics , 1984 .

[14]  L. Townley,et al.  Computationally Efficient Algorithms for Parameter Estimation and Uncertainty Propagation in Numerical Models of Groundwater Flow , 1985 .

[15]  Erik H. Vanmarcke,et al.  Probabilistic Updating of Pore Pressure Fields , 1983 .

[16]  J. Bahr,et al.  Consequences of spatial variability in aquifer properties and data limitations for groundwater modelling practice , 1988 .

[17]  Harry E. LeGrand HYDROGEOLOGIC ISSUES IN HAZARDOUS WASTE MANAGEMENTa , 1982 .

[18]  Lynn W. Gelhar,et al.  Stochastic subsurface hydrology from theory to applications , 1986 .

[19]  Thomas Maddock,et al.  Management model as a tool for studying the worth of data , 1973 .

[20]  B. Sagar,et al.  Galerkin Finite Element Procedure for analyzing flow through random media , 1978 .

[21]  Allan L. Gutjahr,et al.  Stochastic models of subsurface flow: infinite versus finite domains and stationarity , 1981 .

[22]  J. R. Macmillan,et al.  Stochastic analysis of spatial variability in subsurface flows: 2. Evaluation and application , 1978 .

[23]  Allan L. Gutjahr,et al.  Stochastic analysis of spatial variability in subsurface flows: 1. Comparison of one‐ and three‐dimensional flows , 1978 .

[24]  Nicholas Sitar,et al.  Sensitivity analysis in aquifer studies , 1977 .

[25]  Mordechai Shechter,et al.  An anatomy of a groundwater contamination episode , 1985 .

[26]  G. de Marsily,et al.  Spatial Variability of Properties in Porous Media: A Stochastic Approach , 1984 .

[27]  R. Allan Freeze,et al.  Stochastic analysis of steady state groundwater flow in a bounded domain: 2. Two‐dimensional simulations , 1979 .

[28]  Robert V. Whitman,et al.  EVALUATING CALCULATED RISK IN GEOTECHNICAL ENGINEERING , 1984 .

[29]  S. P. Neuman,et al.  A statistical approach to the inverse problem of aquifer hydrology: 1. Theory , 1979 .

[30]  Daniel P. Loucks,et al.  Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation , 1982 .

[31]  G. Dagan Stochastic modeling of groundwater flow by unconditional and conditional probabilities: 1. Conditional simulation and the direct problem , 1982 .

[32]  A. Kneese,et al.  Impacts, Costs, and Techniques for Mitigation of Contaminated Groundwater: A Review , 1984 .

[33]  Yeou-Koung Tung,et al.  Groundwater Management by Chance‐Constrained Model , 1986 .

[34]  J. Delhomme Kriging in the hydrosciences , 1978 .

[35]  P. Kitanidis,et al.  An Application of the Geostatistical Approach to the Inverse Problem in Two-Dimensional Groundwater Modeling , 1984 .

[36]  R. W. Andrews,et al.  Sensitivity Analysis for Steady State Groundwater Flow Using Adjoint Operators , 1985 .

[37]  S. P. Neuman,et al.  Effects of kriging and inverse modeling on conditional simulation of the Avra Valley Aquifer in southern Arizona , 1982 .

[38]  R. Raucher,et al.  A conceptual framework for measuring the benefits of groundwater protection , 1983 .

[39]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .

[40]  S. Gorelick,et al.  AQMAN; linear and quadratic programming matrix generator using two-dimensional ground-water flow simulation for aquifer management modeling , 1987 .

[41]  Yacov Y. Haimes,et al.  Risk Management of Groundwater Contamination in a Multiobjective Framework , 1985 .

[42]  George F. Pinder,et al.  Simulation of groundwater flow and mass transport under uncertainty , 1977 .

[43]  Andre G. Journel,et al.  Constrained interpolation and qualitative information—The soft kriging approach , 1986 .

[44]  R. Freeze A stochastic‐conceptual analysis of one‐dimensional groundwater flow in nonuniform homogeneous media , 1975 .

[45]  J. Stedinger,et al.  Robustness of water resources systems , 1982 .

[46]  Michael D. Dettinger,et al.  First order analysis of uncertainty in numerical models of groundwater flow part: 1. Mathematical development , 1981 .

[47]  P. Gill,et al.  Aquifer Reclamation Design: The Use of Contaminant Transport Simulation Combined With Nonlinear Programing , 1984 .

[48]  Keros Cartwright,et al.  Geological considerations in hazardouswaste disposal , 1981 .

[49]  William G. Gray,et al.  Groundwater contamination from hazardous wastes , 1984 .

[50]  Richard L. Cooley,et al.  Incorporation of prior information on parameters into nonlinear regression groundwater flow models: 1. Theory , 1982 .

[51]  Gregory B. Baecher Site exploration: a probabilistic approach. , 1972 .

[52]  Andre G. Journel,et al.  Geostatistics: Models and tools for the earth sciences , 1986 .

[53]  G. Dagan Stochastic Modeling of Groundwater Flow by Unconditional and Conditional Probabilities: The Inverse Problem , 1985 .

[54]  John L. Wilson,et al.  Illustration and Verification of Adjoint Sensitivity Theory for Steady State Groundwater Flow , 1985 .

[55]  Gedeon Dagan,et al.  Optimization of a Spatially Variable Resource: An Illustration for Irrigated Crops , 1985 .

[56]  A. Kiureghian,et al.  First‐order reliability approach to stochastic analysis of subsurface flow and contaminant transport , 1987 .

[57]  Igor’ Dmitrievich Savinskii,et al.  Probability Tables for Locating Elliptical Underground Masses with a Rectangular Grid , 1965 .

[58]  S. Gorelick A review of distributed parameter groundwater management modeling methods , 1983 .

[59]  Miguel A. Mariño,et al.  Parameter estimation in groundwater: Classical, Bayesian, and deterministic assumptions and their impact on management policies , 1987 .

[60]  Lawrence J. Drew Pattern drilling exploration: Optimum pattern types and hole spacings when searching for elliptical shaped targets , 1979 .

[61]  Gedeon Dagan,et al.  Statistical Inference of Spatial Random Functions , 1986 .

[62]  S. Gorelick,et al.  Optimal groundwater quality management under parameter uncertainty , 1987 .