Identifying nonclassicality from experimental data using artificial neural networks

Valentin Gebhart, 2, ∗ Martin Bohmann, † Karsten Weiher, Nicola Biagi, 6 Alessandro Zavatta, 6 Marco Bellini, 6 and Elizabeth Agudelo ‡ QSTAR, INO-CNR, and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy Università degli Studi di Napoli ”Federico II”, Via Cinthia 21, I-80126 Napoli, Italy Institute for Quantum Optics and Quantum Information IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria Institut für Physik, Universität Rostock, D-18051 Rostock, Germany Istituto Nazionale di Ottica (CNR-INO), L.go E. Fermi 6, 50125 Florence, Italy LENS and Department of Physics & Astronomy, University of Firenze, 50019 Sesto Fiorentino, Florence, Italy (Dated: January 19, 2021)

[1]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[2]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[3]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[4]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[5]  R. Glauber,et al.  Correlation Functions for Coherent Fields , 1965 .

[6]  D. Walls,et al.  Proposal for the measurement of the resonant Stark effect by photon correlation techniques , 1976 .

[7]  H. Yuen Two-photon coherent states of the radiation field , 1976 .

[8]  L. Mandel,et al.  Theory of resonance fluorescence , 1976 .

[9]  L. Mandel,et al.  Sub-Poissonian photon statistics in resonance fluorescence. , 1979, Optics letters.

[10]  D. Walls Squeezed states of light , 1983, Nature.

[11]  L. Mandel,et al.  Photon Antibunching in Resonance Fluorescence , 1977 .

[12]  C. Caves,et al.  A New Formalism for Two-Photon Quantum Optics , 1984 .

[13]  Schumaker,et al.  New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. , 1985, Physical review. A, General physics.

[14]  L. Mandel Non-Classical States of the Electromagnetic Field , 1986 .

[15]  H. Carmichael Spectrum of squeezing and photocurrent shot noise: a normally ordered treatment , 1987 .

[16]  L. Mandel,et al.  Photon-antibunching and sub-Poissonian photon statistics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[17]  Braunstein Homodyne statistics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[18]  Beck,et al.  Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.

[19]  Vogel,et al.  Statistics of difference events in homodyne detection. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[20]  Walmsley,et al.  Experimental determination of the quantum-mechanical state of a molecular vibrational mode using fluorescence tomography. , 1995, Physical review letters.

[21]  King,et al.  Experimental Determination of the Motional Quantum State of a Trapped Atom. , 1996, Physical review letters.

[22]  Timothy C. Ralph,et al.  Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[23]  V. Dodonov REVIEW ARTICLE: `Nonclassical' states in quantum optics: a `squeezed' review of the first 75 years , 2002 .

[24]  M. Bellini,et al.  Quantum-to-Classical Transition with Single-Photon-Added Coherent States of Light , 2004, Science.

[25]  Ruediger Schack,et al.  Unknown Quantum States and Operations, a Bayesian View , 2004, quant-ph/0404156.

[26]  M. Bellini,et al.  Single-photon excitation of a coherent state: Catching the elementary step of stimulated light emission , 2005, quant-ph/0508094.

[27]  W. Vogel,et al.  Quantum Optics: VOGEL: QUANTUM OPTICS O-BK , 2006 .

[28]  S. Deleglise,et al.  Reconstruction of non-classical cavity field states with snapshots of their decoherence , 2008, Nature.

[29]  W. Vogel,et al.  Experimental determination of a nonclassical Glauber-Sudarshan P function , 2008, 0804.1016.

[30]  W. Vogel,et al.  Homodyne Detection and Quantum State Reconstruction , 2009, 0907.1353.

[31]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[32]  W. Vogel,et al.  Nonclassicality filters and quasiprobabilities , 2010, 1004.0788.

[33]  Alexander Hentschel,et al.  Machine learning for precise quantum measurement. , 2009, Physical review letters.

[34]  K. E. CAHnL Density Operators and Quasiprobability Distributions * , 2011 .

[35]  J. Eisert,et al.  Directly estimating nonclassicality. , 2010, Physical review letters.

[36]  W. Marsden I and J , 2012 .

[37]  J. Sperling,et al.  Quasiprobabilities for multipartite quantum correlations of light , 2012, 1211.1585.

[38]  V. Man'ko,et al.  Single-photon-added coherent states: estimation of parameters and fidelity of the optical homodyne detection , 2013, 1301.2084.

[39]  D. Cory,et al.  Hamiltonian learning and certification using quantum resources. , 2013, Physical review letters.

[40]  J. Sperling,et al.  Resources for Quantum Technology: Nonclassicality versus Entanglement , 2014 .

[41]  Seung-Woo Lee,et al.  Generation of hybrid entanglement of light , 2014, Nature Photonics.

[42]  Easwar Magesan,et al.  Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout. , 2014, Physical review letters.

[43]  J. Sperling,et al.  Continuous sampling of the squeezed-state nonclassicality , 2014, 1411.6869.

[44]  M. Plenio,et al.  Converting Nonclassicality into Entanglement. , 2015, Physical review letters.

[45]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[46]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[47]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[48]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[49]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[50]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[51]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2018 .

[52]  Nathan Wiebe,et al.  Experimental Phase Estimation Enhanced By Machine Learning , 2017, Physical Review Applied.

[53]  Florian Marquardt,et al.  Reinforcement Learning with Neural Networks for Quantum Feedback , 2018, Physical Review X.

[54]  I. Walmsley,et al.  Quasiprobability representation of quantum coherence , 2018, Physical Review A.

[55]  Pankaj Mehta,et al.  Reinforcement Learning in Different Phases of Quantum Control , 2017, Physical Review X.

[56]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[57]  Nicolai Friis,et al.  Optimizing Quantum Error Correction Codes with Reinforcement Learning , 2018, Quantum.

[58]  A. Lvovsky Squeezed Light , 2014, A Guide to Experiments in Quantum Optics.

[59]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[60]  Rafael Chaves,et al.  Machine Learning Nonlocal Correlations. , 2018, Physical review letters.

[61]  Fabio Sciarrino,et al.  Calibration of Quantum Sensors by Neural Networks. , 2019, Physical review letters.

[62]  Nathan Wiebe,et al.  Pattern recognition techniques for Boson Sampling validation , 2017, Physical Review X.

[63]  J. Sperling,et al.  Probing nonclassicality with matrices of phase-space distributions , 2020, Quantum.

[64]  M. Bohmann,et al.  Phase-Space Inequalities Beyond Negativities. , 2019, Physical review letters.

[65]  M. Barbieri,et al.  Neural Networks for Detecting Multimode Wigner Negativity. , 2020, Physical review letters.

[66]  M. Bohmann,et al.  Neural-network approach for identifying nonclassicality from click-counting data , 2020, Physical Review Research.

[67]  A. K. Fedorov,et al.  Experimental quantum homodyne tomography via machine learning , 2019, Optica.

[68]  Shahnawaz Ahmed,et al.  Classification and reconstruction of optical quantum states with deep neural networks , 2020, Physical Review Research.

[69]  Augusto Smerzi,et al.  A machine learning approach to Bayesian parameter estimation , 2020, npj Quantum Information.

[70]  Martin Bohmann,et al.  Experimental Certification of Nonclassicality via Phase-Space Inequalities. , 2020, Physical review letters.