Some Simple Algorithms for Structural Comparison

Structural comparison (i.e., the simultaneous analysis of multiple structures) is a problem which arises frequently in such diverse arenas as the study of organizational forms, social network analysis, and automated text analysis. Prior work has demonstrated the applicability of a range of standard multivariate analysis procedures to the structural comparison problem. Here, some simple algorithms are provided which elucidate several of these methods in an easily implemented form.

[1]  H. Charles Romesburg,et al.  Cluster analysis for researchers , 1984 .

[2]  J. Gentle Random number generation and Monte Carlo methods , 1998 .

[3]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[4]  I. Borg Multidimensional similarity structure analysis , 1987 .

[5]  David Krackhardt,et al.  PREDICTING WITH NETWORKS: NONPARAMETRIC MULTIPLE REGRESSION ANALYSIS OF DYADIC DATA * , 1988 .

[6]  R. H. J. M. Otten,et al.  The Annealing Algorithm , 1989 .

[7]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[8]  David Krackhardt,et al.  Cognitive social structures , 1987 .

[9]  Lawrence J Hubert,et al.  Assignment methods incombinatorial data analysis , 1986 .

[10]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[11]  J. Farris On the Cophenetic Correlation Coefficient , 1969 .

[12]  Kathleen M. Carley,et al.  Metric inference for social networks , 1994 .

[13]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[14]  David Krackardt,et al.  QAP partialling as a test of spuriousness , 1987 .

[15]  A. Abbott,et al.  Sequence Analysis and Optimal Matching Methods in Sociology , 2000 .

[16]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[17]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[18]  L. Hubert Assignment methods in combinatorial data analysis , 1986 .