Convergence of a discretization scheme for jump-diffusion processes with state–dependent intensities

This paper proves a convergence result for a discretization scheme for simulating jump–diffusion processes with state–dependent jump intensities. With a bound on the intensity, the point process of jump times can be constructed by thinning a Poisson random measure using state–dependent thinning probabilities. Between the jump epochs of the Poisson random measure, the dynamics of the constructed process are purely diffusive and may be simulated using standard discretization methods. Under conditions on the coefficient functions of the jump–diffusion process, we show that the weak convergence order of this method equals the weak convergence order of the scheme used for the purely diffusive intervals: the construction of jumps does not degrade the convergence of the method.

[1]  Eckhard Platen,et al.  Time Discrete Taylor Approximations for Itǒ Processes with Jump Component , 1988 .

[2]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[3]  G. Mil’shtein A Method of Second-Order Accuracy Integration of Stochastic Differential Equations , 1979 .

[4]  Y. Maghsoodi,et al.  In-Probability Approximation and Simulation of Nonlinear Jump-Diffusion Stochastic Differential Equations , 1987 .

[5]  N. V. Krylov,et al.  Introduction to the Theory of Diffusion Processes (Translations of Mathematical Monographs Vol. 142) , 1999 .

[6]  Tomas Björk,et al.  Bond Market Structure in the Presence of Marked Point Processes , 1997 .

[7]  P. Brémaud Point processes and queues, martingale dynamics , 1983 .

[8]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[9]  Paul Glasserman,et al.  Numerical solution of jump-diffusion LIBOR market models , 2003, Finance Stochastics.

[10]  P. Brémaud Point Processes and Queues , 1981 .

[11]  Darrell Duffie,et al.  FOR AFFINE JUMP-DIFFUSIONS , 2000 .

[12]  D. Duffie,et al.  Transform Analysis and Asset Pricing for Affine Jump-Diffusions , 1999 .

[13]  N. Krylov Introduction to the theory of diffusion processes , 1994 .

[14]  P. Glasserman,et al.  The Term Structure of Simple Forward Rates with Jump Risk , 2000 .

[15]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[16]  M. Musiela,et al.  Martingale Methods in Financial Modelling , 2002 .

[17]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[18]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[19]  Rolando Rebolledo,et al.  WEAK CONVERGENCE OF SEMIMARTINGALES AND DISCRETISATION METHODS , 1985 .

[20]  Y. Maghsoodi,et al.  Exact solutions and doubly efficient approximations of jump-diffusion itô equations , 1998 .

[21]  Philip Protter,et al.  The Euler scheme for Lévy driven stochastic differential equations , 1997 .