Carbon-free sandwich compounds based on arsenic and antimony with icosahedral metal cores
暂无分享,去创建一个
[1] T. Liu,et al. An Energy Dense, Powerful, Robust Bipolar Zinc-Ferrocene Redox Flow Battery. , 2022, Angewandte Chemie.
[2] Zhong‐Ming Sun,et al. Inorganic Ferrocene Analogue [Fe(P4)2]2. , 2022, Journal of the American Chemical Society.
[3] D. Astruc,et al. Looking at platinum carbonyl nanoclusters as superatoms. , 2022, Nanoscale.
[4] M. Scheer,et al. Organometallic polyphosphorus complexes as diversified building blocks in coordination chemistry , 2021 .
[5] M. Caporali,et al. Coordination chemistry of elemental phosphorus , 2021 .
[6] M. Scheer,et al. The Missing Parent Compound [(C5H5)Fe(η5‐P5)]: Synthesis, Characterization, Coordination Behavior and Encapsulation , 2021, Chemistry.
[7] Zhong‐Ming Sun,et al. A sandwich-type cluster containing Ge@Pd3 planar fragment flanked by aromatic nonagermanide caps , 2020, Nature Communications.
[8] M. Radoń. metallocenes , 2020, ioChem-BD Computational Chemistry Datasets.
[9] Zhixun Luo,et al. The Doping Effect of 13-Atom Iron Clusters on Water Adsorption and O-H Bond Dissociation. , 2019, The journal of physical chemistry. A.
[10] H. Yamaura,et al. Three-Dimensional Sandwich Nanocubes Composed of 13-Atom Palladium Core and Hexakis-Carbocycle Shell. , 2018, Journal of the American Chemical Society.
[11] Li Xu,et al. Counterion-induced crystallization of intermetalloid Matryoshka clusters [Sb@Pd12@Sb20]3-,4. , 2017, Dalton transactions.
[12] P. Zavalij,et al. Sb@Ni12@Sb20-/+ and Sb@Pd12@Sb20n Cluster Anions, Where n = +1, -1, -3, -4: Multi-Oxidation-State Clusters of Interpenetrating Platonic Solids. , 2017, Journal of the American Chemical Society.
[13] A. Vessières,et al. Ferrocifen type anti cancer drugs. , 2015, Chemical Society reviews.
[14] Hua‐Jin Zhai,et al. An All-Metal Aromatic Sandwich Complex [Sb3Au3Sb3](3-). , 2015, Journal of the American Chemical Society.
[15] G. Sheldrick. SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.
[16] T. Fässler,et al. A bronze matryoshka: the discrete intermetalloid cluster [Sn@Cu12@Sn20](12-) in the ternary phases A12Cu12Sn21 (A = Na, K). , 2011, Journal of the American Chemical Society.
[17] Akira Harada,et al. Redox-responsive self-healing materials formed from host–guest polymers , 2011, Nature communications.
[18] Stefan Grimme,et al. Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..
[19] Richard J. Gildea,et al. OLEX2: a complete structure solution, refinement and analysis program , 2009 .
[20] Artur Michalak,et al. A Combined Charge and Energy Decomposition Scheme for Bond Analysis. , 2009, Journal of chemical theory and computation.
[21] Anthony L. Spek,et al. Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.
[22] R. Whetten,et al. A unified view of ligand-protected gold clusters as superatom complexes , 2008, Proceedings of the National Academy of Sciences.
[23] Yu Fang,et al. An Organometallic Super‐Gelator with Multiple‐Stimulus Responsive Properties , 2008 .
[24] Artur Michalak,et al. Applications of natural orbitals for chemical valence in a description of bonding in conjugated molecules , 2008, Journal of molecular modeling.
[25] S. Alvarez,et al. Polyhedral structures with an odd number of vertices: nine-coordinate metal compounds. , 2008, Chemistry.
[26] F. Kraus,et al. [Au3Ge18]5- — A Gold—Germanium Cluster with Remarkable Au—Au Interactions. , 2007 .
[27] T. Fässler,et al. [Au3Ge18](5-)--a gold-germanium cluster with remarkable Au-Au interactions. , 2007, Angewandte Chemie.
[28] J. Fettinger,et al. [Ni5Sb17]4- transition-metal Zintl ion complex: crossing the Zintl border in molecular intermetalloid clusters. , 2007, Inorganic chemistry.
[29] H. Yamazaki,et al. (1, 3‐Butadiene‐1, 4‐Diyl)(η5‐Cyclopentadienyl)‐(Triphenylphosphine)Cobalt with Various Substituents , 2007 .
[30] Javier Adrio,et al. Recent applications of chiral ferrocene ligands in asymmetric catalysis. , 2006, Angewandte Chemie.
[31] S. Sakaki,et al. Discrete Sandwich Compounds of Monolayer Palladium Sheets , 2006, Science.
[32] M. Sierka,et al. Tetraphosphacyclopentadienyl and triphosphaallyl ligands in iron complexes. , 2005, Angewandte Chemie.
[33] R. Poli. A Carbon-Free Sandwich Complex [(P5)2Ti]2- , 2004 .
[34] G. Frenking,et al. Structures and Bonding of the Sandwich Complexes [Ti(η5-E5)2]2- (E: CH, N, P, As, Sb): A Theoretical Study , 2003 .
[35] J. Fettinger,et al. Interpenetrating As20 Fullerene and Ni12 Icosahedra in the Onion-Skin [As@Ni12@As20]3 Ion , 2003, Science.
[36] Gernot Frenking,et al. Structures and bonding of the sandwich complexes [Ti(eta5-E5)2]2- (E = CH, N, P, As, Sb): a theoretical study. , 2003, Inorganic chemistry.
[37] Gernot Frenking,et al. Structures, metal-ligand bond strength, and bonding analysis of ferrocene derivatives with group-15 heteroligands Fe(η5-E5)2 and FeCp(η5-E5) (E = N, P, As, Sb). A theoretical study , 2002 .
[38] Vincenzo Barone,et al. Physically motivated density functionals with improved performances: The modified Perdew–Burke–Ernzerhof model , 2002 .
[39] C. Cramer,et al. A Carbon-Free Sandwich Complex [(P5)2Ti]2− , 2002, Science.
[40] F. Gascoin,et al. Synthesis and Characterization of the “Metallic Salts” A5Pn4 (A: K, Rb, Cs and Pn: As, Sb, Bi) with Isolated Zigzag Tetramers of Pn44‐ and an Extra Delocalized Electron. , 2001 .
[41] F. Gascoin,et al. Synthesis and characterization of the "metallic salts" A5Pn4 (A = K, Rb, Cs and Pn = As, Sb, Bi) with isolated zigzag tetramers of Pn4(4-) and an extra delocalized electron. , 2001, Inorganic chemistry.
[42] F. Matthias Bickelhaupt,et al. Chemistry with ADF , 2001, J. Comput. Chem..
[43] Breunig,et al. Stabilization of a Pentastibacyclopentadienyl Ligand in the Triple-Decker Sandwich Complexes , 2000, Angewandte Chemie.
[44] Gotthelf Wolmershäuser,et al. [{CpR(OC)2Fe}2(-1:1-P4)]: Starting Material for the Synthesis of Iron Sandwich Compounds with a 1,2,3-Triphospholyl Ligand and of a Trinuclear Iron Complex with a P11 Ligand , 2000 .
[45] G. Scuseria,et al. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional , 1999 .
[46] N. Avarvari,et al. Synthesis of 1,2‐Diphospholide Ions , 1995 .
[47] Jinlong,et al. Stability, electronic and magnetic properties, and reactivity of icosahedral MCo12 clusters. , 1993, Physical review. B, Condensed matter.
[48] O. Scherer,et al. Ferrocene mit einem Pentaarsacyclopentadienyl-Liganden , 1990 .
[49] O. Scherer,et al. [(η5-C5H4R)(CO)3Cr]2Cr(μ,η5-As5)Cr(η5-C5H4Me)], ein Tripeldecker-Sandwichkomplex mit unverzerttem cyclo-As5-Mitteldeck , 1989 .
[50] T. Brück,et al. [(η‐5‐P5)Fe(η5‐C5Me5)], a Pentaphosphaferrocene Derivative , 1987 .
[51] J. F. Nixon,et al. First structural characterisation of penta- and hexa-phosphorus analogues of ferrocene. Synthesis, crystal and molecular structure of the air-stable, sublimable iron sandwich compounds [Fe(η5-C2R2P3)2], and [Fe(η5-C3R3P2)(η5-C2R2P3)](R = But) , 1987 .
[52] Arvi Rauk,et al. On the calculation of bonding energies by the Hartree Fock Slater method , 1977 .
[53] F. Mathey. Les phosphacymantrenes, premiers heterocycles phosphores dotes d'une veritable chimie “aromatique” , 1976 .
[54] E. O. Fischer,et al. Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen , 1952 .
[55] R. Woodward,et al. THE STRUCTURE OF IRON BIS-CYCLOPENTADIENYL , 1952 .
[56] T. J. KEALY,et al. A New Type of Organo-Iron Compound , 1951, Nature.