Carbon-free sandwich compounds based on arsenic and antimony with icosahedral metal cores

[1]  T. Liu,et al.  An Energy Dense, Powerful, Robust Bipolar Zinc-Ferrocene Redox Flow Battery. , 2022, Angewandte Chemie.

[2]  Zhong‐Ming Sun,et al.  Inorganic Ferrocene Analogue [Fe(P4)2]2. , 2022, Journal of the American Chemical Society.

[3]  D. Astruc,et al.  Looking at platinum carbonyl nanoclusters as superatoms. , 2022, Nanoscale.

[4]  M. Scheer,et al.  Organometallic polyphosphorus complexes as diversified building blocks in coordination chemistry , 2021 .

[5]  M. Caporali,et al.  Coordination chemistry of elemental phosphorus , 2021 .

[6]  M. Scheer,et al.  The Missing Parent Compound [(C5H5)Fe(η5‐P5)]: Synthesis, Characterization, Coordination Behavior and Encapsulation , 2021, Chemistry.

[7]  Zhong‐Ming Sun,et al.  A sandwich-type cluster containing Ge@Pd3 planar fragment flanked by aromatic nonagermanide caps , 2020, Nature Communications.

[8]  M. Radoń metallocenes , 2020, ioChem-BD Computational Chemistry Datasets.

[9]  Zhixun Luo,et al.  The Doping Effect of 13-Atom Iron Clusters on Water Adsorption and O-H Bond Dissociation. , 2019, The journal of physical chemistry. A.

[10]  H. Yamaura,et al.  Three-Dimensional Sandwich Nanocubes Composed of 13-Atom Palladium Core and Hexakis-Carbocycle Shell. , 2018, Journal of the American Chemical Society.

[11]  Li Xu,et al.  Counterion-induced crystallization of intermetalloid Matryoshka clusters [Sb@Pd12@Sb20]3-,4. , 2017, Dalton transactions.

[12]  P. Zavalij,et al.  Sb@Ni12@Sb20-/+ and Sb@Pd12@Sb20n Cluster Anions, Where n = +1, -1, -3, -4: Multi-Oxidation-State Clusters of Interpenetrating Platonic Solids. , 2017, Journal of the American Chemical Society.

[13]  A. Vessières,et al.  Ferrocifen type anti cancer drugs. , 2015, Chemical Society reviews.

[14]  Hua‐Jin Zhai,et al.  An All-Metal Aromatic Sandwich Complex [Sb3Au3Sb3](3-). , 2015, Journal of the American Chemical Society.

[15]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[16]  T. Fässler,et al.  A bronze matryoshka: the discrete intermetalloid cluster [Sn@Cu12@Sn20](12-) in the ternary phases A12Cu12Sn21 (A = Na, K). , 2011, Journal of the American Chemical Society.

[17]  Akira Harada,et al.  Redox-responsive self-healing materials formed from host–guest polymers , 2011, Nature communications.

[18]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[19]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[20]  Artur Michalak,et al.  A Combined Charge and Energy Decomposition Scheme for Bond Analysis. , 2009, Journal of chemical theory and computation.

[21]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[22]  R. Whetten,et al.  A unified view of ligand-protected gold clusters as superatom complexes , 2008, Proceedings of the National Academy of Sciences.

[23]  Yu Fang,et al.  An Organometallic Super‐Gelator with Multiple‐Stimulus Responsive Properties , 2008 .

[24]  Artur Michalak,et al.  Applications of natural orbitals for chemical valence in a description of bonding in conjugated molecules , 2008, Journal of molecular modeling.

[25]  S. Alvarez,et al.  Polyhedral structures with an odd number of vertices: nine-coordinate metal compounds. , 2008, Chemistry.

[26]  F. Kraus,et al.  [Au3Ge18]5- — A Gold—Germanium Cluster with Remarkable Au—Au Interactions. , 2007 .

[27]  T. Fässler,et al.  [Au3Ge18](5-)--a gold-germanium cluster with remarkable Au-Au interactions. , 2007, Angewandte Chemie.

[28]  J. Fettinger,et al.  [Ni5Sb17]4- transition-metal Zintl ion complex: crossing the Zintl border in molecular intermetalloid clusters. , 2007, Inorganic chemistry.

[29]  H. Yamazaki,et al.  (1, 3‐Butadiene‐1, 4‐Diyl)(η5‐Cyclopentadienyl)‐(Triphenylphosphine)Cobalt with Various Substituents , 2007 .

[30]  Javier Adrio,et al.  Recent applications of chiral ferrocene ligands in asymmetric catalysis. , 2006, Angewandte Chemie.

[31]  S. Sakaki,et al.  Discrete Sandwich Compounds of Monolayer Palladium Sheets , 2006, Science.

[32]  M. Sierka,et al.  Tetraphosphacyclopentadienyl and triphosphaallyl ligands in iron complexes. , 2005, Angewandte Chemie.

[33]  R. Poli A Carbon-Free Sandwich Complex [(P5)2Ti]2- , 2004 .

[34]  G. Frenking,et al.  Structures and Bonding of the Sandwich Complexes [Ti(η5-E5)2]2- (E: CH, N, P, As, Sb): A Theoretical Study , 2003 .

[35]  J. Fettinger,et al.  Interpenetrating As20 Fullerene and Ni12 Icosahedra in the Onion-Skin [As@Ni12@As20]3– Ion , 2003, Science.

[36]  Gernot Frenking,et al.  Structures and bonding of the sandwich complexes [Ti(eta5-E5)2]2- (E = CH, N, P, As, Sb): a theoretical study. , 2003, Inorganic chemistry.

[37]  Gernot Frenking,et al.  Structures, metal-ligand bond strength, and bonding analysis of ferrocene derivatives with group-15 heteroligands Fe(η5-E5)2 and FeCp(η5-E5) (E = N, P, As, Sb). A theoretical study , 2002 .

[38]  Vincenzo Barone,et al.  Physically motivated density functionals with improved performances: The modified Perdew–Burke–Ernzerhof model , 2002 .

[39]  C. Cramer,et al.  A Carbon-Free Sandwich Complex [(P5)2Ti]2− , 2002, Science.

[40]  F. Gascoin,et al.  Synthesis and Characterization of the “Metallic Salts” A5Pn4 (A: K, Rb, Cs and Pn: As, Sb, Bi) with Isolated Zigzag Tetramers of Pn44‐ and an Extra Delocalized Electron. , 2001 .

[41]  F. Gascoin,et al.  Synthesis and characterization of the "metallic salts" A5Pn4 (A = K, Rb, Cs and Pn = As, Sb, Bi) with isolated zigzag tetramers of Pn4(4-) and an extra delocalized electron. , 2001, Inorganic chemistry.

[42]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[43]  Breunig,et al.  Stabilization of a Pentastibacyclopentadienyl Ligand in the Triple-Decker Sandwich Complexes , 2000, Angewandte Chemie.

[44]  Gotthelf Wolmershäuser,et al.  [{CpR(OC)2Fe}2(-1:1-P4)]: Starting Material for the Synthesis of Iron Sandwich Compounds with a 1,2,3-Triphospholyl Ligand and of a Trinuclear Iron Complex with a P11 Ligand , 2000 .

[45]  G. Scuseria,et al.  Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional , 1999 .

[46]  N. Avarvari,et al.  Synthesis of 1,2‐Diphospholide Ions , 1995 .

[47]  Jinlong,et al.  Stability, electronic and magnetic properties, and reactivity of icosahedral MCo12 clusters. , 1993, Physical review. B, Condensed matter.

[48]  O. Scherer,et al.  Ferrocene mit einem Pentaarsacyclopentadienyl-Liganden , 1990 .

[49]  O. Scherer,et al.  [(η5-C5H4R)(CO)3Cr]2Cr(μ,η5-As5)Cr(η5-C5H4Me)], ein Tripeldecker-Sandwichkomplex mit unverzerttem cyclo-As5-Mitteldeck , 1989 .

[50]  T. Brück,et al.  [(η‐5‐P5)Fe(η5‐C5Me5)], a Pentaphosphaferrocene Derivative , 1987 .

[51]  J. F. Nixon,et al.  First structural characterisation of penta- and hexa-phosphorus analogues of ferrocene. Synthesis, crystal and molecular structure of the air-stable, sublimable iron sandwich compounds [Fe(η5-C2R2P3)2], and [Fe(η5-C3R3P2)(η5-C2R2P3)](R = But) , 1987 .

[52]  Arvi Rauk,et al.  On the calculation of bonding energies by the Hartree Fock Slater method , 1977 .

[53]  F. Mathey Les phosphacymantrenes, premiers heterocycles phosphores dotes d'une veritable chimie “aromatique” , 1976 .

[54]  E. O. Fischer,et al.  Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen , 1952 .

[55]  R. Woodward,et al.  THE STRUCTURE OF IRON BIS-CYCLOPENTADIENYL , 1952 .

[56]  T. J. KEALY,et al.  A New Type of Organo-Iron Compound , 1951, Nature.