A semigroup approach to the strong ergodic theorem of the multistate stable population process.

"In this paper we first formulate the dynamics of multistate stable population processes as a partial differential equation. Next, we rewrite this equation as an abstract differential equation in a Banach space, and solve it by using the theory of strongly continuous semigroups of bounded linear operators. Subsequently, we investigate the asymptotic behavior of this semigroup to show the strong ergodic theorem which states that there exists a stable distribution independent of the initial distribution. Finally, we introduce the dual problem in order to obtain a logical definition for the reproductive value and we discuss its applications." (SUMMARY IN FRE)

[1]  H. J. A. M. Heijmans,et al.  Structured populations, linear semigroups and positivity , 1984 .

[2]  A. H. Pollard,et al.  The Measurement of Reproductivity , 1977 .

[3]  Mats Gyllenberg,et al.  The size and scar distributions of the yeast Saccharomyces cerevisiae , 1986 .

[4]  Brian Charlesworth,et al.  Evolution in Age-Structured Populations , 1981 .

[5]  A. Schumitzky,et al.  An Operator Residue Theorem with Applications to Branching Processes and Renewal Type Integral Equations , 1975 .

[6]  G. Webb Theory of Nonlinear Age-Dependent Population Dynamics , 1985 .

[7]  Tosio Kato Perturbation theory for linear operators , 1966 .

[8]  Aldo Belleni-Morante,et al.  Applied semigroups and evolution equations , 1979 .

[9]  J. Prüss On the qualitative behaviour of populations with age-specific interactions , 1983 .

[10]  T. Hamada,et al.  On the oscillatory transient stage structure of yeast population , 1982 .

[11]  M. Shubik,et al.  Convex structures and economic theory , 1968 .

[12]  K. Jörgens An asymptotic expansion in the theory of neutron transport , 1958 .

[13]  Joel E. Cohen,et al.  Ergodic theorems in demography , 1979 .

[14]  T. Hamada,et al.  Stationary stage structure of yeast population with stage dependent generation time , 1982 .

[15]  J. H Pollard,et al.  Mathematical Models for the Growth of Human Populations , 1973 .

[16]  Alfred J. Lotka,et al.  A Problem in Age-Distribution , 1911 .

[17]  Jan Prüß Equilibrium solutions of age-specific population dynamics of several species , 1981 .

[18]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[19]  H. L. Bras Équilibre et croissance de populations soumises à des migrations , 1971 .

[20]  Andrei Rogers,et al.  Spatial Population Analysis: Methods and Computer Programs , 1978 .

[21]  George Oster,et al.  The growth and structure of human populations , 1972 .

[22]  H. Heijmans The dynamical behaviour of the age-size-distribution of a cell population , 1986 .

[23]  Odo Diekmann,et al.  Continuum population dynamics with an application to Daphnia magra , 1984 .

[24]  Nathan Keyfitz,et al.  Applied Mathematical Demography , 1978 .

[25]  R. Nagel,et al.  One-parameter Semigroups of Positive Operators , 1986 .

[26]  Nathan Keyfitz,et al.  Introduction to the mathematics of population: with revisions , 1977 .

[27]  F. R. Gantmakher The Theory of Matrices , 1984 .

[28]  Jan Prüβ,et al.  Stability analysis for equilibria in age-specific population dynamics , 1983 .

[29]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[30]  A. Rogers,et al.  The Spatial Reproductive Value and the Spatial Momentum of Zero Population Growth , 1978 .

[31]  G. Webb A semigroup proof of the Sharpe-Lotka theorem , 1984 .

[32]  N. Keyfitz Multidimensionality in Population Analysis , 1980 .

[33]  J Song,et al.  Population Control in China: Theory and Applications , 1985 .

[34]  Andrei Rogers Introduction to Multiregional Mathematical Demography , 1975 .

[35]  E. Davies,et al.  One-parameter semigroups , 1980 .

[36]  William Feller,et al.  On the Integral Equation of Renewal Theory , 1941 .

[37]  A. M'Kendrick Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.