Monostatic and Bistatic G-Band BiCMOS Radar Transceivers With On-Chip Antennas and Tunable TX-to-RX Leakage Cancellation

This article presents <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>-band monostatic and bistatic radar transceivers (TRX) incorporating on-chip antennas for short-range high-precision applications. The circuits were fabricated using a silicon–germanium (SiGe) BiCMOS technology offering heterojunction bipolar transistors (HBTs) with <inline-formula> <tex-math notation="LaTeX">$\bf {f}_{\mathbf {T}}/\bf {f}_{\mathbf {MAX}}$ </tex-math></inline-formula> of 300/500 GHz. The monostatic TRX implements a tunable leakage canceller (LC) for enhanced transmitter (TX)-to-receiver (RX) leakage compensation and hence improved detectability of weakly reflecting near targets. A standalone monostatic TRX characterized at on-wafer level achieves 4-dBm maximum output power (<inline-formula> <tex-math notation="LaTeX">$\bf {P}_{\mathbf {TX}}$ </tex-math></inline-formula>) and 19-dB peak conversion gain (<inline-formula> <tex-math notation="LaTeX">$\bf {G}_{\mathbf {RX}}$ </tex-math></inline-formula>) with 3-dB bandwidths of 18 and 17GHz for the TX and the RX, respectively. The bistatic version reaches <inline-formula> <tex-math notation="LaTeX">$\bf {P}_{\mathbf {TX}}$ </tex-math></inline-formula> of 13 dBm and <inline-formula> <tex-math notation="LaTeX">$\bf {G}_{\mathbf {RX}}$ </tex-math></inline-formula> of 24 dB expanding the 3-dB bandwidths to 32 and 34 GHz for the TX and RX, respectively. A double-folded dipole antenna providing 5-dBi gain at 170 GHz was implemented using localized backside etching (LBE) and integrated with the transceivers. A frequency-modulated continuous-wave (FMCW) radar demonstrator incorporating an external phase-locked loop (PLL) was built to evaluate both TRXs and tunable leakage cancellation feature available in the monostatic variant. The maximum equivalent isotropic radiated power (<inline-formula> <tex-math notation="LaTeX">$\bf {EIRP}$ </tex-math></inline-formula>), including on-chip antennas, is 8 and 18 dBm for the monostatic and bistatic TRX, respectively. The radars support sweep bandwidth up to 20 GHz reaching 2.1 cm spatial resolution. For a target at 1 m distance the measured ranging precision is <inline-formula> <tex-math notation="LaTeX">$105~\mu \text{m}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$13~\mu \text{m}$ </tex-math></inline-formula> for monostatic and bistatic TRX, accordingly. Activation of leakage cancellation effectively suppresses close-in noise and extends the minimum detectable range remarkably.

[1]  Yuanxun Ethan Wang,et al.  Transmitter Noise Cancellation in Monostatic FMCW Radar , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[2]  Christian Waldschmidt,et al.  High-Resolution 160-GHz Imaging MIMO Radar Using MMICs With On-Chip Frequency Synthesizers , 2019, IEEE Transactions on Microwave Theory and Techniques.

[3]  D. Kissinger,et al.  A Scalable 79-GHz Radar Platform Based on Single-Channel Transceivers , 2019, IEEE Transactions on Microwave Theory and Techniques.

[4]  Mehmet Kaynak,et al.  A micromachined double-dipole antenna for 122 – 140 GHz applications based on a SiGe BiCMOS technology , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[5]  E. Afshari,et al.  A High-Resolution 220-GHz Ultra-Wideband Fully Integrated ISAR Imaging System , 2019, IEEE Transactions on Microwave Theory and Techniques.

[6]  K. Aufinger,et al.  A 77GHz 4-channel automotive radar transceiver in SiGe , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[7]  Shuai Yuan,et al.  Compact 120–140 GHz radar Tx/Rx sensors with on-chip antenna , 2014, 2014 IEEE Radio and Wireless Symposium (RWS).

[8]  Ehsan Afshari,et al.  A 170-GHz Fully Integrated Single-Chip FMCW Imaging Radar with 3-D Imaging Capability , 2017, IEEE Journal of Solid-State Circuits.

[9]  Hua Wang,et al.  A Millimeter-Wave Polarization-Division-Duplex Transceiver Front-End With an On-Chip Multifeed Self-Interference-Canceling Antenna and an All-Passive Reconfigurable Canceller , 2018, IEEE Journal of Solid-State Circuits.

[10]  Dietmar Kissinger,et al.  A Monostatic E-Band Radar Transceiver with a Tunable TX-to-RX Leakage Canceler for Automotive Applications , 2018, 2018 IEEE/MTT-S International Microwave Symposium - IMS.

[11]  Christian Waldschmidt,et al.  On Monostatic and Bistatic System Concepts for mm-Wave Radar MMICs , 2018, IEEE Transactions on Microwave Theory and Techniques.

[12]  Gabriel M. Rebeiz,et al.  75–85 GHz flip-chip phased array RFIC with simultaneous 8-transmit and 8-receive paths for automotive radar applications , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[13]  Martin Jahn,et al.  160-GHz SiGe-based transmitter and receiver with highly directional antennas in package , 2013, 2013 European Microwave Integrated Circuit Conference.

[14]  C. Waldschmidt,et al.  Planar Highly Efficient High-Gain 165 GHz On-Chip Antennas for Integrated Radar Sensors , 2019, IEEE Antennas and Wireless Propagation Letters.

[15]  Herbert Jaeger,et al.  Quasi-circulator based automotive monostatic transceiver with integrated leakage canceler , 2016, 2016 11th European Microwave Integrated Circuits Conference (EuMIC).

[16]  Dietmar Kissinger,et al.  A scalable frequency-division multiplexing mimo radar utilizing single-sideband delta-sigma modulation , 2017, 2017 IEEE Asia Pacific Microwave Conference (APMC).

[17]  Brian P. Ginsburg,et al.  A 160 GHz Pulsed Radar Transceiver in 65 nm CMOS , 2014, IEEE Journal of Solid-State Circuits.

[18]  A. Stelzer,et al.  A 77-GHz FMCW MIMO Radar Based on an SiGe Single-Chip Transceiver , 2009, IEEE Transactions on Microwave Theory and Techniques.

[19]  A. Stelzer,et al.  A 140-GHz single-chip transceiver in a SiGe technology , 2012, 2012 7th European Microwave Integrated Circuit Conference.

[20]  N. Pohl,et al.  A SiGe-Based 240-GHz FMCW Radar System for High-Resolution Measurements , 2019, IEEE Transactions on Microwave Theory and Techniques.

[21]  V. d'Alessandro,et al.  The EU DOTSEVEN Project: Overview and Results , 2016, 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[22]  Andreas Stelzer,et al.  An active quasi-circulator with a passive linear TX-path for 77-GHz automotive FMCW radar systems in SiGe technology , 2015, 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM).

[23]  Reinhard Feger,et al.  A 122-GHz system-in-package radar sensor with BPSK modulator in a 130-nm SiGe BiCMOS technology , 2016, 2016 46th European Microwave Conference (EuMC).

[24]  Herbert Jaeger,et al.  77-GHz active quasi-circulator based Doppler radar with phase evaluation for object tracking , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[25]  T. Zwick,et al.  Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band , 2012, IEEE Transactions on Microwave Theory and Techniques.

[26]  I. Sarkas,et al.  A Fundamental Frequency 120-GHz SiGe BiCMOS Distance Sensor With Integrated Antenna , 2012, IEEE Transactions on Microwave Theory and Techniques.

[27]  Herbert Jaeger,et al.  An Active Quasi-Circulator for 77 GHz Automotive FMCW Radar Systems in SiGe Technology , 2015, IEEE Microwave and Wireless Components Letters.

[28]  Andreas Stelzer,et al.  A D-band fully-differential quadrature FMCW radar transceiver with 11 dBm output power and a 3-dB 30-GHz bandwidth in SiGe BiCMOS , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[29]  Dietmar Kissinger,et al.  Multi-Purpose Fully Differential 61- and 122-GHz Radar Transceivers for Scalable MIMO Sensor Platforms , 2017, IEEE Journal of Solid-State Circuits.

[30]  Christian Waldschmidt,et al.  Ultracompact 160-GHz FMCW Radar MMIC With Fully Integrated Offset Synthesizer , 2017, IEEE Transactions on Microwave Theory and Techniques.

[31]  B. Heinemann,et al.  Half-Terahertz SiGe BiCMOS technology , 2012, 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[32]  Songcheol Hong,et al.  Improved Tx-to-Rx isolation with balanced radar front-end , 2004, 34th European Microwave Conference, 2004..

[33]  B. Heinemann,et al.  A 210–270-GHz Circularly Polarized FMCW Radar With a Single-Lens-Coupled SiGe HBT Chip , 2016, IEEE Transactions on Terahertz Science and Technology.

[34]  Andreas Stelzer,et al.  A SiGe 122-GHz FMCW Radar Sensor with 21.5 dBm EIRP based on a 43-Element Antenna Array in an eWLB Package , 2018, 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM).

[35]  John D. Cressler,et al.  Large-Signal Reliability Analysis of SiGe HBT Cascode Driver Amplifiers , 2015, IEEE Transactions on Electron Devices.

[36]  S. P. Voinigescu,et al.  A Fundamental Frequency 143-152 GHz Radar Transceiver with Built-In Calibration and Self-Test , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[37]  Christian Bredendiek,et al.  High-Precision D-Band FMCW-Radar Sensor Based on a Wideband SiGe-Transceiver MMIC , 2014, IEEE Transactions on Microwave Theory and Techniques.

[38]  Shuai Yuan,et al.  110–140-GHz single-chip reconfigurable radar frontend with on-chip antenna , 2015, 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting - BCTM.

[39]  Dietmar Kissinger,et al.  D-Band Frequency Quadruplers in BiCMOS Technology , 2018, IEEE Journal of Solid-State Circuits.

[40]  André Bourdoux,et al.  An 80 GHz Low-Noise Amplifier Resilient to the TX Spillover in Phase-Modulated Continuous-Wave Radars , 2015, IEEE Journal of Solid-State Circuits.