Strong Spherical Asymptotics for Rotor-Router Aggregation and the Divisible Sandpile

[1]  Lionel Levine,et al.  Scaling limits for internal aggregation models with multiple sources , 2007, 0712.3378.

[2]  Y. Peres,et al.  Spherical asymptotics for the rotor-router model in Zd , 2005, math/0503251.

[3]  F. Redig,et al.  Limiting Shapes for Deterministic Centrally Seeded Growth Models , 2007, math/0702450.

[4]  F. Redig,et al.  Limiting shapes for deterministic internal growth models , 2007 .

[5]  Joshua N. Cooper,et al.  Simulating a Random Walk with Constant Error , 2004, Combinatorics, Probability and Computing.

[6]  Y. Peres,et al.  The rotor-router shape is spherical , 2005 .

[7]  M. Kleber Goldbug variations , 2005, math/0501497.

[8]  Lionel Levine The Rotor-Router Model , 2004, math/0409407.

[9]  Jörg Lingens,et al.  The Growth Model , 2004 .

[10]  Yvan Le Borgne,et al.  On the identity of the sandpile group , 2002, Discret. Math..

[11]  Jan van den Heuvel,et al.  Algorithmic Aspects of a Chip-Firing Game , 2001, Combinatorics, Probability and Computing.

[12]  K. Uchiyama Green's Functions for Random Walks on ZN , 1998 .

[13]  Dhar,et al.  Eulerian Walkers as a Model of Self-Organized Criticality. , 1996, Physical review letters.

[14]  K. Uchiyama,et al.  Potential kernel for two-dimensional random walk , 1996 .

[15]  G. Lawler Subdiffusive Fluctuations for Internal Diffusion Limited Aggregation , 1995 .

[16]  D. Griffeath,et al.  Internal Diffusion Limited Aggregation , 1992 .

[17]  T. Lindvall Lectures on the Coupling Method , 1992 .

[18]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[19]  Paul Koosis La plus petite majorante surharmonique et son rapport avec l'existence des fonctions entières de type exponentiel jouant le rôle de multiplicateurs , 1983 .