Strong Spherical Asymptotics for Rotor-Router Aggregation and the Divisible Sandpile
暂无分享,去创建一个
[1] Lionel Levine,et al. Scaling limits for internal aggregation models with multiple sources , 2007, 0712.3378.
[2] Y. Peres,et al. Spherical asymptotics for the rotor-router model in Zd , 2005, math/0503251.
[3] F. Redig,et al. Limiting Shapes for Deterministic Centrally Seeded Growth Models , 2007, math/0702450.
[4] F. Redig,et al. Limiting shapes for deterministic internal growth models , 2007 .
[5] Joshua N. Cooper,et al. Simulating a Random Walk with Constant Error , 2004, Combinatorics, Probability and Computing.
[6] Y. Peres,et al. The rotor-router shape is spherical , 2005 .
[7] M. Kleber. Goldbug variations , 2005, math/0501497.
[8] Lionel Levine. The Rotor-Router Model , 2004, math/0409407.
[9] Jörg Lingens,et al. The Growth Model , 2004 .
[10] Yvan Le Borgne,et al. On the identity of the sandpile group , 2002, Discret. Math..
[11] Jan van den Heuvel,et al. Algorithmic Aspects of a Chip-Firing Game , 2001, Combinatorics, Probability and Computing.
[12] K. Uchiyama. Green's Functions for Random Walks on ZN , 1998 .
[13] Dhar,et al. Eulerian Walkers as a Model of Self-Organized Criticality. , 1996, Physical review letters.
[14] K. Uchiyama,et al. Potential kernel for two-dimensional random walk , 1996 .
[15] G. Lawler. Subdiffusive Fluctuations for Internal Diffusion Limited Aggregation , 1995 .
[16] D. Griffeath,et al. Internal Diffusion Limited Aggregation , 1992 .
[17] T. Lindvall. Lectures on the Coupling Method , 1992 .
[18] Tang,et al. Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .
[19] Paul Koosis. La plus petite majorante surharmonique et son rapport avec l'existence des fonctions entières de type exponentiel jouant le rôle de multiplicateurs , 1983 .