X-ray and NMR Crystallography Studies of Novel Theophylline Cocrystals Prepared by Liquid Assisted Grinding

Two new cocrystals of theophylline were prepared by liquid assisted grinding. While compound 1 (theophylline:4-aminosalicylic acid 2:1) was characterized by single crystal X-ray diffraction, the crystal structure of compound 2 (theophylline:4-aminobenzoic acid 1:1) was determined by combining X-ray powder diffraction (XRPD), solid-state NMR and DFT calculations. The use of 1D/2D 1H high-resolution solid-state NMR techniques provided structural insight on local length scales revealing internuclear proximities and relative orientations between the building blocks of compound 2, thus providing information on the type of hydrogen bond synthons formed. DFT calculations were also employed to generate meaningful structures and calculate NMR 1H and 13C chemical shifts to further validate the XRPD model. Compound 2 shows an unusual structure, in which the amino groups do not participate in hydrogen bonds, while compound 1 exhibits an extended hydrogen-bonding network, in which planar subunits can be recognized.

[1]  N. Masciocchi,et al.  Reversibly changing a painkiller structure: a hot topic for a cold case--ibuprofen lysine salt. , 2015, Journal of pharmaceutical and biomedical analysis.

[2]  G. Palmisano,et al.  Difluprednate: more than meets the eye. , 2015, Journal of pharmaceutical and biomedical analysis.

[3]  Crystal chemistry of the antibiotic doripenem. , 2014, Journal of pharmaceutical sciences.

[4]  R. Tan,et al.  Cocrystallization with flufenamic acid: comparison of physicochemical properties of two pharmaceutical cocrystals , 2014 .

[5]  A. Nangia,et al.  Modulating the solubility of sulfacetamide by means of cocrystals , 2014 .

[6]  B. Sarma,et al.  Hydrogen bond synthon competition in the stabilization of theophylline cocrystals , 2014 .

[7]  Hailu Zhang,et al.  Structure determination of the theophylline–nicotinamide cocrystal: a combined powder XRD, 1D solid-state NMR, and theoretical calculation study , 2014 .

[8]  William Jones,et al.  Cocrystallization by Freeze-Drying: Preparation of Novel Multicomponent Crystal Forms , 2013 .

[9]  Co-crystals of 9-(2-Methoxyphenyl)-9H-xanthen-9-ol with Caffeine and Theophylline , 2013, Journal of Chemical Crystallography.

[10]  Steven P. Brown,et al.  Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[11]  William Jones,et al.  Knowledge-based hydrogen bond prediction and the synthesis of salts and cocrystals of the anti-malarial drug pyrimethamine with various drug and GRAS molecules , 2013 .

[12]  F. Vogt,et al.  Probing hydrogen bonding in cocrystals and amorphous dispersions using (14)N-(1)H HMQC solid-state NMR. , 2013, Molecular pharmaceutics.

[13]  B. Chan,et al.  Examining the robustness of a theophylline cocrystal during grinding with additives , 2012 .

[14]  A. Nangia,et al.  Pharmaceutical Cocrystals of Niclosamide , 2012 .

[15]  Catriona A. Morrison,et al.  42 salt forms of tyramine: structural comparison and the occurrence of hydrate formation. , 2012, Acta crystallographica. Section B, Structural science.

[16]  M. Eddleston,et al.  Cocrystal dissociation and molecular demixing in the solid state. , 2012, Chemical communications.

[17]  F. Emmerling,et al.  Mechanochemical synthesis and structural characterisation of a theophylline-benzoic acid cocrystal (1 : 1) , 2012 .

[18]  R. Nikolova,et al.  3-Carboxyphenylboronic acid–theophylline (1/1) , 2012, Acta crystallographica. Section E, Structure reports online.

[19]  J. Steed,et al.  New Insights into an Old Molecule: Interaction Energies of Theophylline Crystal Forms , 2012 .

[20]  R. Pritchard,et al.  Polymorphs of anhydrous theophylline: stable form IV consists of dimer pairs and metastable form I consists of hydrogen-bonded chains. , 2011, Acta crystallographica. Section C, Crystal structure communications.

[21]  A monoclinic polymorph of theophylline , 2011, Acta crystallographica. Section E, Structure reports online.

[22]  S. Rohani,et al.  A 2:1 sulfamethazine-theophylline cocrystal exhibiting two tautomers of sulfamethazine. , 2011, Acta crystallographica. Section C, Crystal structure communications.

[23]  B. Rezaei,et al.  A new method based on electrospray ionisation ion mobility spectrometry (ESI-IMS) for simultaneous determination of caffeine and theophylline. , 2011, Food chemistry.

[24]  Anita Blagus,et al.  2-[1-(3-Aminophenylimino)ethyl]phenol , 2011, Acta crystallographica. Section E, Structure reports online.

[25]  Mujeeb Khan,et al.  Heterosynthon mediated tailored synthesis of pharmaceutical complexes: a solid-state NMR approach , 2011 .

[26]  A. Růžička,et al.  Crystal Structures of Two Aromatic Zinc(II) Carboxylates: [Zn(4-Chlorosalicylato)2(H2O)4]·2theophylline·(H2O)2 and Unique [Zn(5-Chlorosalicylato)2(isonicotinamide)2(H2O)] , 2011 .

[27]  J. Baruah,et al.  Water Bridged Assembly and Dimer Formation in Co-Crystals of Caffeine or Theophylline with Polycarboxylic Acids , 2011 .

[28]  S. Boerrigter,et al.  Cocrystals of nutraceutical p-coumaric acid with caffeine and theophylline: polymorphism and solid-state stability explored in detail using their crystal graphs , 2011 .

[29]  Changquan Calvin Sun,et al.  Understanding the relationship between crystal structure, plasticity and compaction behaviour of theophylline, methyl gallate, and their 1:1 co-crystal , 2010 .

[30]  A. Emwas,et al.  Synthesis, spectral and structural characterization of dinuclear rhodium (II) complexes of the anticonvulsant drug valproate with theophylline and caffeine , 2009 .

[31]  R. Tan,et al.  Theophylline–gentisic acid (1/1) , 2009, Acta crystallographica. Section E, Structure reports online.

[32]  L. Mafra,et al.  High-resolution 1H homonuclear dipolar recoupling NMR spectra of biological solids at MAS rates up to 67 kHz. , 2009, Journal of magnetic resonance.

[33]  S. Rohani,et al.  Preparation and Characterization of Theophylline-Nicotinamide Cocrystal , 2009 .

[34]  Naír Rodríguez-Hornedo,et al.  Solubility Advantage of Pharmaceutical Cocrystals , 2009 .

[35]  P. Bombicz,et al.  Thermal stability and structure of a new co-crystal of theophylline formed with phthalic acid , 2009 .

[36]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[37]  Raj Suryanarayanan,et al.  A rapid thermal method for cocrystal screening , 2008 .

[38]  L. Fábián,et al.  Exploring the relationship between cocrystal stability and symmetry: is Wallach's rule applicable to multi-component solids? , 2008, Chemical communications.

[39]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[40]  Francesco Mauri,et al.  Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials , 2007 .

[41]  T. C. Lewis,et al.  Low-temperature determination of theophylline dimethyl sulfoxide solvate , 2007 .

[42]  T. Friščić,et al.  Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. , 2007, Molecular pharmaceutics.

[43]  Naír Rodríguez-Hornedo,et al.  Mechanisms by which moisture generates cocrystals. , 2007, Molecular pharmaceutics.

[44]  Aeri Park,et al.  The salt-cocrystal continuum: the influence of crystal structure on ionization state. , 2007, Molecular pharmaceutics.

[45]  Zi-Liang Wang,et al.  Theophylline–2,4‐dihydroxy­benzoic acid–water (1/1/1) , 2007 .

[46]  L. Fábián,et al.  Exploring cocrystal-cocrystal reactivity via liquid-assisted grinding: the assembling of racemic and dismantling of enantiomeric cocrystals. , 2006, Chemical communications.

[47]  W. Motherwell,et al.  Physical stability enhancement of theophylline via cocrystallization. , 2006, International journal of pharmaceutics.

[48]  G. Meyer,et al.  Konkurrierende Liganden: Theophyllin als nicht- und stark koordinierender Ligand in Quecksilber(II)-Komplexen / Competing Ligands: Theophylline as Non- and Strongly Coordinating Ligand in Mercury(II) Complexes , 2006 .

[49]  E. Molins,et al.  Ruthenium complexes with purine derivatives: Syntheses, structural characterization and preliminary studies with plasmidic DNA , 2005 .

[50]  Andreas Fischer,et al.  Redetermination of the β‐polymorph of p‐amino­benzoic acid , 2005 .

[51]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[52]  N. Masciocchi,et al.  X-RAY POWDER DIFFRACTION CHARACTERIZATION OF POLYMERIC METAL DIAZOLATES , 2005 .

[53]  G. Goward,et al.  High-resolution solid-state NMR studies of imidazole-based proton conductors: Structure motifs and chemical exchange from H-1 NMR , 2002 .

[54]  J. Madarász,et al.  Thermal, FTIR and XRD study on some 1:1 molecular compounds of theophylline , 2002 .

[55]  Changquan Calvin Sun,et al.  Theophyl­line monohydrate , 2002 .

[56]  H. Spiess,et al.  High-resolution 1H NMR spectroscopy in the solid state: very fast sample rotation and multiple-quantum coherences. , 2001, Journal of magnetic resonance.

[57]  John B. O. Mitchell,et al.  The determination of the crystal structure of anhydrous theophylline by X-ray powder diffraction with a systematic search algorithm, lattice energy calculations, and C-13 and N-15 solid-state NMR: A question of polymorphism in a given unit cell , 2001 .

[58]  Francesco Mauri,et al.  All-electron magnetic response with pseudopotentials: NMR chemical shifts , 2001 .

[59]  B. Fung,et al.  An improved broadband decoupling sequence for liquid crystals and solids. , 2000, Journal of magnetic resonance.

[60]  P. Boyle,et al.  Methylxanthines. I. Anhydrous Theophylline , 1997 .

[61]  N. Masciocchi,et al.  The contribution of powder diffraction methods to structural co-ordination chemistry , 1997 .

[62]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[63]  T. Taga,et al.  A 2:1 molecular complex of theophylline and 5-fluorouracil as the monohydrate , 1995 .

[64]  T. Debaerdemaeker,et al.  Synthesis, spectroscopic studies, and crystal structure of theophyllinium tetrabromopalladate(II) , 1989 .

[65]  Margaret C. Etter,et al.  Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials , 1987 .

[66]  F. Knoch,et al.  Zur Kristallstruktur des Theophyllin‐Harnstoff‐Komplexes , 1986 .

[67]  I. Bernal,et al.  The stereochemistry of organosulfur compounds: Part XXIII. The crystal and molecular structure of 4-amino-4′-nitrodiphenyldisulfide , 1984 .

[68]  H. Yamazaki,et al.  Interactions of tetrakis(-µ-carboxylato)dirhodium(II), an antitumour agent, with nucleic acid bases. X-Ray crystal structures of [Rh2(acetato)4(theophylline)2] and [Rh2(acetato)4(caffeine)2] , 1980 .

[69]  E. L. Amma,et al.  Reaction of PtCl42– with theophylline: X-ray crystal structures of bis(theophyllinium) tetrachloroplatinate(II) and theophyllinium trichlorotheophyllineplatinate(II) , 1979 .

[70]  C. Koo,et al.  The Crystal and Molecular Structure of Theophylline Hydrochloride , 1978 .

[71]  S. Fujii,et al.  The crystal and molecular structure of the 2:1 molecular complex of theophylline with phenobarbital , 1977 .

[72]  E. Shefter,et al.  Structural studies on molecular complexes. V. Crystal structures of sulfathiazole-sulfanilamide and sulfathiazole-theophylline complexes. , 1971, Journal of pharmaceutical sciences.

[73]  E. Shefter Structural studies on complexes. IV. Crystal structure of a 1:1 5-chlorosalicylic acid and theophylline complex. , 1969, Journal of pharmaceutical sciences.