Parallel lattice basis reduction

The famous L3 algorithm for lattice basis reduction k parallelizecl. Using a dktributed memory architecture compntationaJ model, the algorithm we propose efficient y uses 0( n2 ) processors, where n is the dimension of the bask to reduce. Its implementation, realized on a massively parallel machine, allows us to conduct many experimentations. The first results are presented in this paper. We show that high speed-ups are obtained even for large amounts of processors, and give new ernpiricti knowledge of the L3 sequential complexity. ●This work was supported in part by the PRC Math &natiques et Injormatique and by the GToupement C3 of the french Centre National de la Recherche Scientifique. Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direot commercial advantage, the ACM copyright notice and tlhe title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. LSSAC ‘92-7192/CA, USA ~ 1992 ACM 0-89791 -490 -21921000710269 . ..$1 ,50

[1]  Claus-Peter Schnorr,et al.  Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.

[2]  Erich Kaltofen,et al.  On the complexity of finding short vectors in integer lattices , 1983, EUROCAL.

[3]  Gilles Villard,et al.  PAC: first experiments on a 128 transputers méganode , 1991, ISSAC '91.

[4]  Arnold Schönhage Factorization of Univariate Integer Polynomials by Diophantine Aproximation and an Improved Basis Reduction Algorithm , 1984, ICALP.

[5]  Abderezak Touzene,et al.  Optimal Multinode Broadcast on a Mesh Connected Graph with Reduced Bufferization , 1991, EDMCC.

[6]  Jeffrey C. Lagarias,et al.  Solving low density subset sum problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[7]  Valtteri Niemi,et al.  A New Trapdoor in Knapsacks , 1991, EUROCRYPT.

[8]  Jeffrey C. Lagarias,et al.  Polynomial Time Algorithms for Finding Integer Relations Among Real Numbers , 1989, STACS.

[9]  John Abbott,et al.  On the factorization of polynomials over algebraic fields , 1988 .

[10]  Claus-Peter Schnorr,et al.  Factoring Integers and Computing Discrete Logarithms via Diophantine Approximations , 1991, EUROCRYPT.

[11]  B. D. Saunders,et al.  Fast parallel computation of hermite and smith forms of polynomial matrices , 1987 .

[12]  Stephen A. Cook,et al.  The Classifikation of Problems which have Fast Parallel Algorithms , 1983, FCT.

[13]  Leonard M. Adleman,et al.  On breaking generalized knapsack public key cryptosystems , 1983, STOC.

[14]  Gary L. Miller,et al.  Sublinear Parallel Algorithm for Computing the Greatest Common Divisor of Two Integers , 1984, SIAM J. Comput..

[15]  Susan Landau,et al.  Factoring Polynomials Over Algebraic Number Fields , 1985, SIAM J. Comput..

[16]  Michel Cosnard,et al.  Gaussian Elimination on Message Passing Architecture , 1987, ICS.

[17]  Jeffrey C. Lagarias The computational complexity of simultaneous Diophantine approximation problems , 1982, FOCS 1982.

[18]  Arjen K. Lenstra,et al.  Factoring polynominals over algebraic number fields , 1983, EUROCAL.

[19]  Yves Robert,et al.  Data Allocation Strategies for the Gauss and Jordan Algorithms on a Ring of Processors , 1989, Inf. Process. Lett..

[20]  Gilles Villard,et al.  Computer algebra on MIMD machine , 1988, SIGS.

[21]  Gilles Villard,et al.  Parallel gcd and Lattice Basis Reduction , 1992, CONPAR.

[22]  Leonard M. Adleman,et al.  On Breaking the Iterated Merkle-Hellman Public-Key Cryptosystem , 1982, CRYPTO.

[23]  D. S. Scott,et al.  Efficient All-to-All Communication Patterns in Hypercube and Mesh Topologies , 1991, The Sixth Distributed Memory Computing Conference, 1991. Proceedings.

[24]  Michael E. Pohst,et al.  A Modification of the LLL Reduction Algorithm , 1987, J. Symb. Comput..

[25]  Arjen K. Lenstra,et al.  Lattices and Factorization of Polynomials over Algebraic Number Fields , 1982, EUROCAM.

[26]  Y. Saad,et al.  Gaussian elimination on hypercubes , 1986 .

[27]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[28]  Claus-Peter Schnorr,et al.  A More Efficient Algorithm for Lattice Basis Reduction , 1988, J. Algorithms.

[29]  László Lovász,et al.  Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers , 1984, STOC '84.

[30]  Joachim von zur Gathen,et al.  Parallel algorithms for algebraic problems , 1983, SIAM J. Comput..

[31]  László Lovász,et al.  Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.

[32]  Jacques Stern,et al.  Cryptanalysis of a Public-Key Cryptosystem Based on Approximations by Rational Numbers , 1991, EUROCRYPT.

[33]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .