Parameter identification problems in the modelling of cell motility
暂无分享,去创建一个
Chandrasekhar Venkataraman | Wayne Croft | Björn Stinner | Graham Ladds | C. M. Elliott | Charles M Elliott | Cathryn Weston | G. Ladds | B. Stinner | C. Venkataraman | C. Weston | W. Croft
[1] Charles M. Elliott,et al. Optimal Control of the Propagation of a Graph in Inhomogeneous Media , 2009, SIAM J. Control. Optim..
[2] Jorge J. Moré,et al. The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .
[3] Marc Herant,et al. Cytopede: A Three-Dimensional Tool for Modeling Cell Motility on a Flat Surface , 2010, J. Comput. Biol..
[4] Alex Mogilner,et al. Mathematics of Cell Motility: Have We Got Its Number? , 2022 .
[5] E. Chang,et al. Compartmentalized signaling of Ras in fission yeast. , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[6] O. Nielsen,et al. [13] Pheromone procedures in fission yeast , 1995 .
[7] Harald Garcke,et al. A parametric finite element method for fourth order geometric evolution equations , 2007, J. Comput. Phys..
[8] James T. Wassell,et al. Numerical Methods of Statistics , 2002, Technometrics.
[9] Omar Lakkis,et al. Implicit-Explicit Timestepping with Finite Element Approximation of Reaction-Diffusion Systems on Evolving Domains , 2011, SIAM J. Numer. Anal..
[10] Axel Voigt,et al. The influence of electric fields on nanostructures - Simulation and control , 2010, Math. Comput. Simul..
[11] Falko Ziebert,et al. Model for self-polarization and motility of keratocyte fragments , 2012, Journal of The Royal Society Interface.
[12] Dejan Milutinovic,et al. Parameters and Driving Force Estimation of Cell Motility via Expectation-Maximization (EM) Approach , 2010 .
[13] K. Shiozaki,et al. Pom1 DYRK Regulates Localization of the Rga4 GAP to Ensure Bipolar Activation of Cdc42 in Fission Yeast , 2008, Current Biology.
[14] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[15] M. Burger. Levenberg–Marquardt level set methods for inverse obstacle problems , 2004 .
[16] Eshel Ben-Jacob,et al. Activated Membrane Patches Guide Chemotactic Cell Motility , 2011, PLoS Comput. Biol..
[17] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .
[18] Christos Davatzikos,et al. An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects , 2008, Journal of mathematical biology.
[19] Adaptive Finite Elements for Semilinear Reaction-Diffusion Systems on Growing Domains , 2013, 1308.2449.
[20] Parameter estimation in nonlinear evolution equations , 1998 .
[21] C. M. Elliott,et al. Modelling cell motility and chemotaxis with evolving surface finite elements , 2012, Journal of The Royal Society Interface.
[22] Roger Lui,et al. Exploring the control circuit of cell migration by mathematical modeling. , 2008, Biophysical journal.
[23] Dennis Bray,et al. Cell Movements: From Molecules to Motility , 1992 .
[24] Marco A. Iglesias,et al. Level-set techniques for facies identification in reservoir modeling , 2011 .
[25] Dimitrios Vavylonis,et al. Model of Fission Yeast Cell Shape Driven by Membrane-Bound Growth Factors and the Cytoskeleton , 2013, PLoS Comput. Biol..
[26] Carl Tim Kelley,et al. Iterative methods for optimization , 1999, Frontiers in applied mathematics.
[27] Micah Dembo,et al. Traction force microscopy in Dictyostelium reveals distinct roles for myosin II motor and actin-crosslinking activity in polarized cell movement , 2007, Journal of Cell Science.
[28] Harald Garcke,et al. Parametric Approximation of Willmore Flow and Related Geometric Evolution Equations , 2008, SIAM J. Sci. Comput..
[29] John A. Mackenzie,et al. Chemotaxis: A Feedback-Based Computational Model Robustly Predicts Multiple Aspects of Real Cell Behaviour , 2011, PLoS biology.
[30] Steven D. Webb,et al. Modeling Cell Movement and Chemotaxis Using Pseudopod-Based Feedback , 2011, SIAM J. Sci. Comput..
[31] Philip K. Maini,et al. An efficient and robust numerical algorithm for estimating parameters in Turing systems , 2010, J. Comput. Phys..
[32] G. Ladds,et al. The sxa2‐dependent inactivation of the P‐factor mating pheromone in the fission yeast Schizosaccharomyces pombe , 1996, Molecular microbiology.
[33] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[34] Alberto Aliseda,et al. Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry , 2007, Proceedings of the National Academy of Sciences.
[35] P. Nurse,et al. Spatial control of Cdc42 activation determines cell width in fission yeast , 2011, Molecular biology of the cell.
[36] C. M. Elliott,et al. A Fully Discrete Evolving Surface Finite Element Method , 2012, SIAM J. Numer. Anal..
[37] V. Isakov. Appendix -- Function Spaces , 2017 .
[38] Visakan Kadirkamanathan,et al. Parameter estimation and inference for stochastic reaction-diffusion systems: application to morphogenesis in D. melanogaster , 2009, BMC Systems Biology.
[39] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[40] Juncheng Wei,et al. Spot Self-Replication and Dynamics for the Schnakenburg Model in a Two-Dimensional Domain , 2009, J. Nonlinear Sci..
[41] Sophie G. Martin,et al. Cdc42 Explores the Cell Periphery for Mate Selection in Fission Yeast , 2013, Current Biology.
[42] G. Ladds,et al. Quantitative analysis of human ras localization and function in the fission yeast Schizosaccharomyces pombe , 2013, Yeast.
[43] Axel Voigt,et al. Control of Nanostructures through Electric Fields and Related Free Boundary Problems , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.
[44] Charles M. Elliott,et al. Finite elements on evolving surfaces , 2007 .
[45] Matthew P. Neilson,et al. Use of the parameterised finite element method to robustly and efficiently evolve the edge of a moving cell. , 2010, Integrative biology : quantitative biosciences from nano to macro.
[46] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[47] C. Venkataraman. Reaction-diffusion systems on evolving domains withapplications to the theory of biological pattern formation , 2011 .
[48] Chandrasekhar Venkataraman,et al. Backward difference time discretization of parabolic differential equations on evolving surfaces , 2013 .
[49] Till Bretschneider,et al. Analysis of cell movement by simultaneous quantification of local membrane displacement and fluorescent intensities using Quimp2. , 2009, Cell motility and the cytoskeleton.
[50] Charles M. Elliott,et al. L2-estimates for the evolving surface finite element method , 2012, Math. Comput..
[51] Charles M. Elliott,et al. Numerical analysis of an inverse problem for the eikonal equation , 2011, Numerische Mathematik.
[52] Dimitrios Vavylonis,et al. Oscillatory Dynamics of Cdc42 GTPase in the Control of Polarized Growth , 2012, Science.
[53] O. Lakkis,et al. Global existence for semilinear reaction–diffusion systems on evolving domains , 2010, Journal of Mathematical Biology.
[54] Expression of Concern: The Role of the RACK1 Ortholog Cpc2p in Modulating Pheromone-Induced Cell Cycle Arrest in Fission Yeast , 2019, PloS one.
[55] Azmy S. Ackleh,et al. Numerical studies of parameter estimation techniques for nonlinear evolution equations , 1998, Kybernetika.
[56] Gerhard Dziuk,et al. Computational parametric Willmore flow , 2008, Numerische Mathematik.
[57] Ralph Weissleder,et al. Intravital Imaging , 2011, Cell.
[58] Tony F. Chan,et al. Active contours without edges , 2001, IEEE Trans. Image Process..
[59] D. Dormann,et al. Simultaneous quantification of cell motility and protein-membrane-association using active contours. , 2002, Cell motility and the cytoskeleton.
[60] Ivo F Sbalzarini,et al. Modeling and simulation of biological systems from image data , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.
[61] G. Ladds,et al. The Coordination of Cell Growth during Fission Yeast Mating Requires Ras1-GTP Hydrolysis , 2013, PloS one.
[62] I. Prigogine,et al. Symmetry Breaking Instabilities in Dissipative Systems. II , 1968 .
[63] C. M. Elliott,et al. An ALE ESFEM for Solving PDEs on Evolving Surfaces , 2012 .