Parameter identification problems in the modelling of cell motility

We present a novel parameter identification algorithm for the estimation of parameters in models of cell motility using imaging data of migrating cells. Two alternative formulations of the objective functional that measures the difference between the computed and observed data are proposed and the parameter identification problem is formulated as a minimisation problem of nonlinear least squares type. A Levenberg–Marquardt based optimisation method is applied to the solution of the minimisation problem and the details of the implementation are discussed. A number of numerical experiments are presented which illustrate the robustness of the algorithm to parameter identification in the presence of large deformations and noisy data and parameter identification in three dimensional models of cell motility. An application to experimental data is also presented in which we seek to identify parameters in a model for the monopolar growth of fission yeast cells using experimental imaging data. Our numerical tests allow us to compare the method with the two different formulations of the objective functional and we conclude that the results with both objective functionals seem to agree.

[1]  Charles M. Elliott,et al.  Optimal Control of the Propagation of a Graph in Inhomogeneous Media , 2009, SIAM J. Control. Optim..

[2]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[3]  Marc Herant,et al.  Cytopede: A Three-Dimensional Tool for Modeling Cell Motility on a Flat Surface , 2010, J. Comput. Biol..

[4]  Alex Mogilner,et al.  Mathematics of Cell Motility: Have We Got Its Number? , 2022 .

[5]  E. Chang,et al.  Compartmentalized signaling of Ras in fission yeast. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  O. Nielsen,et al.  [13] Pheromone procedures in fission yeast , 1995 .

[7]  Harald Garcke,et al.  A parametric finite element method for fourth order geometric evolution equations , 2007, J. Comput. Phys..

[8]  James T. Wassell,et al.  Numerical Methods of Statistics , 2002, Technometrics.

[9]  Omar Lakkis,et al.  Implicit-Explicit Timestepping with Finite Element Approximation of Reaction-Diffusion Systems on Evolving Domains , 2011, SIAM J. Numer. Anal..

[10]  Axel Voigt,et al.  The influence of electric fields on nanostructures - Simulation and control , 2010, Math. Comput. Simul..

[11]  Falko Ziebert,et al.  Model for self-polarization and motility of keratocyte fragments , 2012, Journal of The Royal Society Interface.

[12]  Dejan Milutinovic,et al.  Parameters and Driving Force Estimation of Cell Motility via Expectation-Maximization (EM) Approach , 2010 .

[13]  K. Shiozaki,et al.  Pom1 DYRK Regulates Localization of the Rga4 GAP to Ensure Bipolar Activation of Cdc42 in Fission Yeast , 2008, Current Biology.

[14]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[15]  M. Burger Levenberg–Marquardt level set methods for inverse obstacle problems , 2004 .

[16]  Eshel Ben-Jacob,et al.  Activated Membrane Patches Guide Chemotactic Cell Motility , 2011, PLoS Comput. Biol..

[17]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[18]  Christos Davatzikos,et al.  An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects , 2008, Journal of mathematical biology.

[19]  Adaptive Finite Elements for Semilinear Reaction-Diffusion Systems on Growing Domains , 2013, 1308.2449.

[20]  Parameter estimation in nonlinear evolution equations , 1998 .

[21]  C. M. Elliott,et al.  Modelling cell motility and chemotaxis with evolving surface finite elements , 2012, Journal of The Royal Society Interface.

[22]  Roger Lui,et al.  Exploring the control circuit of cell migration by mathematical modeling. , 2008, Biophysical journal.

[23]  Dennis Bray,et al.  Cell Movements: From Molecules to Motility , 1992 .

[24]  Marco A. Iglesias,et al.  Level-set techniques for facies identification in reservoir modeling , 2011 .

[25]  Dimitrios Vavylonis,et al.  Model of Fission Yeast Cell Shape Driven by Membrane-Bound Growth Factors and the Cytoskeleton , 2013, PLoS Comput. Biol..

[26]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[27]  Micah Dembo,et al.  Traction force microscopy in Dictyostelium reveals distinct roles for myosin II motor and actin-crosslinking activity in polarized cell movement , 2007, Journal of Cell Science.

[28]  Harald Garcke,et al.  Parametric Approximation of Willmore Flow and Related Geometric Evolution Equations , 2008, SIAM J. Sci. Comput..

[29]  John A. Mackenzie,et al.  Chemotaxis: A Feedback-Based Computational Model Robustly Predicts Multiple Aspects of Real Cell Behaviour , 2011, PLoS biology.

[30]  Steven D. Webb,et al.  Modeling Cell Movement and Chemotaxis Using Pseudopod-Based Feedback , 2011, SIAM J. Sci. Comput..

[31]  Philip K. Maini,et al.  An efficient and robust numerical algorithm for estimating parameters in Turing systems , 2010, J. Comput. Phys..

[32]  G. Ladds,et al.  The sxa2‐dependent inactivation of the P‐factor mating pheromone in the fission yeast Schizosaccharomyces pombe , 1996, Molecular microbiology.

[33]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[34]  Alberto Aliseda,et al.  Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry , 2007, Proceedings of the National Academy of Sciences.

[35]  P. Nurse,et al.  Spatial control of Cdc42 activation determines cell width in fission yeast , 2011, Molecular biology of the cell.

[36]  C. M. Elliott,et al.  A Fully Discrete Evolving Surface Finite Element Method , 2012, SIAM J. Numer. Anal..

[37]  V. Isakov Appendix -- Function Spaces , 2017 .

[38]  Visakan Kadirkamanathan,et al.  Parameter estimation and inference for stochastic reaction-diffusion systems: application to morphogenesis in D. melanogaster , 2009, BMC Systems Biology.

[39]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[40]  Juncheng Wei,et al.  Spot Self-Replication and Dynamics for the Schnakenburg Model in a Two-Dimensional Domain , 2009, J. Nonlinear Sci..

[41]  Sophie G. Martin,et al.  Cdc42 Explores the Cell Periphery for Mate Selection in Fission Yeast , 2013, Current Biology.

[42]  G. Ladds,et al.  Quantitative analysis of human ras localization and function in the fission yeast Schizosaccharomyces pombe , 2013, Yeast.

[43]  Axel Voigt,et al.  Control of Nanostructures through Electric Fields and Related Free Boundary Problems , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[44]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[45]  Matthew P. Neilson,et al.  Use of the parameterised finite element method to robustly and efficiently evolve the edge of a moving cell. , 2010, Integrative biology : quantitative biosciences from nano to macro.

[46]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[47]  C. Venkataraman Reaction-diffusion systems on evolving domains withapplications to the theory of biological pattern formation , 2011 .

[48]  Chandrasekhar Venkataraman,et al.  Backward difference time discretization of parabolic differential equations on evolving surfaces , 2013 .

[49]  Till Bretschneider,et al.  Analysis of cell movement by simultaneous quantification of local membrane displacement and fluorescent intensities using Quimp2. , 2009, Cell motility and the cytoskeleton.

[50]  Charles M. Elliott,et al.  L2-estimates for the evolving surface finite element method , 2012, Math. Comput..

[51]  Charles M. Elliott,et al.  Numerical analysis of an inverse problem for the eikonal equation , 2011, Numerische Mathematik.

[52]  Dimitrios Vavylonis,et al.  Oscillatory Dynamics of Cdc42 GTPase in the Control of Polarized Growth , 2012, Science.

[53]  O. Lakkis,et al.  Global existence for semilinear reaction–diffusion systems on evolving domains , 2010, Journal of Mathematical Biology.

[54]  Expression of Concern: The Role of the RACK1 Ortholog Cpc2p in Modulating Pheromone-Induced Cell Cycle Arrest in Fission Yeast , 2019, PloS one.

[55]  Azmy S. Ackleh,et al.  Numerical studies of parameter estimation techniques for nonlinear evolution equations , 1998, Kybernetika.

[56]  Gerhard Dziuk,et al.  Computational parametric Willmore flow , 2008, Numerische Mathematik.

[57]  Ralph Weissleder,et al.  Intravital Imaging , 2011, Cell.

[58]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[59]  D. Dormann,et al.  Simultaneous quantification of cell motility and protein-membrane-association using active contours. , 2002, Cell motility and the cytoskeleton.

[60]  Ivo F Sbalzarini,et al.  Modeling and simulation of biological systems from image data , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[61]  G. Ladds,et al.  The Coordination of Cell Growth during Fission Yeast Mating Requires Ras1-GTP Hydrolysis , 2013, PloS one.

[62]  I. Prigogine,et al.  Symmetry Breaking Instabilities in Dissipative Systems. II , 1968 .

[63]  C. M. Elliott,et al.  An ALE ESFEM for Solving PDEs on Evolving Surfaces , 2012 .