An explicit time-integrator with singular mass for non-smooth dynamics
暂无分享,去创建一个
David Dureisseix | Anthony Gravouil | Gabriel Georges | Thomas Homolle | Jean Di Stasio | A. Gravouil | D. Dureisseix | G. Georges | T. Homolle | J. Di Stasio
[1] Jérôme Pousin,et al. A weighted finite element mass redistribution method for dynamic contact problems , 2019, J. Comput. Appl. Math..
[2] R. Taylor,et al. Lagrange constraints for transient finite element surface contact , 1991 .
[3] Laetitia Paoli,et al. A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..
[4] Michel Saint Jean,et al. The non-smooth contact dynamics method , 1999 .
[5] J. C. Simo,et al. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .
[6] Anthony Gravouil,et al. A new heterogeneous asynchronous explicit–implicit time integrator for nonsmooth dynamics , 2017 .
[7] A. Cardona,et al. Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme , 2014 .
[8] M. Bischoff,et al. Hybrid‐mixed discretization of elasto‐dynamic contact problems using consistent singular mass matrices , 2013 .
[9] J. Moreau. Numerical aspects of the sweeping process , 1999 .
[10] Dinesh K. Pai,et al. Geometric Numerical Integration of Inequality Constrained, Nonsmooth Hamiltonian Systems , 2010, SIAM J. Sci. Comput..
[11] Barbara I. Wohlmuth,et al. A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..
[12] Barbara Wohlmuth,et al. A stable energy‐conserving approach for frictional contact problems based on quadrature formulas , 2008 .
[13] J. C. Simo,et al. Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .
[14] Jerrold E. Marsden,et al. Nonsmooth Lagrangian Mechanics and Variational Collision Integrators , 2003, SIAM J. Appl. Dyn. Syst..
[15] Matthew West,et al. Decomposition contact response (DCR) for explicit finite element dynamics , 2005, International Journal for Numerical Methods in Engineering.
[16] Mark O. Neal,et al. Contact‐impact by the pinball algorithm with penalty and Lagrangian methods , 1991 .
[17] Patrice Hauret,et al. Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact , 2010 .
[18] David Dureisseix,et al. Benchmark cases for robust explicit time integrators in non-smooth transient dynamics , 2019, Advanced Modeling and Simulation in Engineering Sciences.
[19] Patrick Laborde,et al. Mass redistribution method for finite element contact problems in elastodynamics , 2008 .
[20] Wing Kam Liu,et al. Nonlinear Finite Elements for Continua and Structures , 2000 .
[21] P. Panagiotopoulos,et al. New developments in contact problems , 1999 .
[22] Rolf Krause,et al. Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme , 2012 .
[23] Thomas J. R. Hughes,et al. Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .
[24] V. Acary,et al. A nonsmooth generalized‐ α scheme for flexible multibody systems with unilateral constraints , 2013 .
[25] Jérôme Pousin,et al. An overview of recent results on Nitsche's method for contact problems , 2016 .
[26] Yves Renard,et al. The singular dynamic method for constrained second order hyperbolic equations: Application to dynamic contact problems , 2010, J. Comput. Appl. Math..
[27] Alexandre Ern,et al. Time-Integration Schemes for the Finite Element Dynamic Signorini Problem , 2011, SIAM J. Sci. Comput..
[28] Nathan M. Newmark,et al. A Method of Computation for Structural Dynamics , 1959 .
[29] Barbara Wohlmuth,et al. Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.
[30] T. Laursen,et al. DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .
[31] Vincent Acary,et al. Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts , 2012 .
[32] Peter Wriggers,et al. Computational Contact Mechanics , 2002 .
[33] J. Marsden,et al. Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .
[34] Steen Krenk,et al. Energy conservation in Newmark based time integration algorithms , 2006 .
[35] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[36] J. Pousin,et al. A robust finite element redistribution approach for elastodynamic contact problems , 2016 .
[37] Jintai Chung,et al. A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .