Integer Points in Knapsack Polytopes and s-Covering Radius

Given a matrix $A\in \mathbb{Z}^{m\times n}$ satisfying certain regularity assumptions, we consider for a positive integer $s$ the set ${\mathcal F}_s(A)\subset \mathbb{Z}^m$ of all vectors $b\in \mathbb{Z}^m$ such that the associated knapsack polytope \begin{equation*} P(A, b)=\{ x \in \mathbb{R}^n_{\ge 0}: A x= b\} \end{equation*} contains at least $s$ integer points. We present lower and upper bounds on the so called diagonal $s$-Frobenius number associated to the set ${\mathcal F}_s(A)$. In the case $m=1$ we prove an optimal lower bound for the $s$-Frobenius number, which is the largest integer $b$ such that $P(A,b)$ contains less than $s$ integer points.

[1]  Ravi Kannan,et al.  Lattice translates of a polytope and the Frobenius problem , 1992, Comb..

[2]  J. L. Ramírez-Alfonsín Complexity of the Frobenius problem , 1996 .

[3]  Jamie Simpson,et al.  The Frobenius problem on lattices , 2005, Australas. J Comb..

[4]  Jorge L. Ramírez Alfonsín,et al.  Complexity of the Frobenius Problem , 1996, Comb..

[5]  Achill Schürmann,et al.  Bounds on generalized Frobenius numbers , 2010, Eur. J. Comb..

[6]  Iskander Aliev,et al.  Feasibility of Integer Knapsacks , 2009, SIAM J. Optim..

[7]  Iskander Aliev,et al.  An optimal lower bound for the Frobenius problem , 2005 .

[8]  Peter M. Gruber,et al.  Geometry of Numbers , 2011, Encyclopedia of Cryptography and Security.

[9]  Lenny Fukshansky,et al.  Generalized Frobenius numbers: Bounds and average behavior , 2011, 1105.0841.

[10]  Matthias Beck,et al.  An Extreme Family of Generalized Frobenius Numbers , 2011, Integers.

[11]  Lenny Fukshansky,et al.  Frobenius Problem and the Covering Radius of a Lattice , 2007, Discret. Comput. Geom..

[12]  V. Arnold,et al.  Geometry and Growth Rate of Frobenius Numbers of Additive Semigroups , 2006 .

[13]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[14]  K. Ball Volumes of sections of cubes and related problems , 1989 .

[15]  J. Alonso,et al.  Convex and Discrete Geometry , 2009 .

[16]  Ramírez Alfonsin,et al.  The diophantine frobenius problem , 2005 .

[17]  J. Vaaler A geometric inequality with applications to linear forms , 1979 .

[18]  Enrique Treviño,et al.  The multidimensional Frobenius problem , 2011 .

[19]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[20]  R. Graham,et al.  On a linear diophantine problem of Frobenius , 1972 .

[21]  Andrzej Schinzel,et al.  A Property of Polynomials with an Applicationto Siegel’s Lemma , 2002 .

[22]  Jeffrey Shallit,et al.  Unbounded Discrepancy in Frobenius Numbers , 2011, Integers.

[23]  Matthias Beck,et al.  A formula related to the Frobenius problem in two dimensions , 2004 .