Integer Points in Knapsack Polytopes and s-Covering Radius
暂无分享,去创建一个
Iskander Aliev | Martin Henk | Eva Linke | M. Henk | I. Aliev | Eva Linke
[1] Ravi Kannan,et al. Lattice translates of a polytope and the Frobenius problem , 1992, Comb..
[2] J. L. Ramírez-Alfonsín. Complexity of the Frobenius problem , 1996 .
[3] Jamie Simpson,et al. The Frobenius problem on lattices , 2005, Australas. J Comb..
[4] Jorge L. Ramírez Alfonsín,et al. Complexity of the Frobenius Problem , 1996, Comb..
[5] Achill Schürmann,et al. Bounds on generalized Frobenius numbers , 2010, Eur. J. Comb..
[6] Iskander Aliev,et al. Feasibility of Integer Knapsacks , 2009, SIAM J. Optim..
[7] Iskander Aliev,et al. An optimal lower bound for the Frobenius problem , 2005 .
[8] Peter M. Gruber,et al. Geometry of Numbers , 2011, Encyclopedia of Cryptography and Security.
[9] Lenny Fukshansky,et al. Generalized Frobenius numbers: Bounds and average behavior , 2011, 1105.0841.
[10] Matthias Beck,et al. An Extreme Family of Generalized Frobenius Numbers , 2011, Integers.
[11] Lenny Fukshansky,et al. Frobenius Problem and the Covering Radius of a Lattice , 2007, Discret. Comput. Geom..
[12] V. Arnold,et al. Geometry and Growth Rate of Frobenius Numbers of Additive Semigroups , 2006 .
[13] Kenneth Steiglitz,et al. Combinatorial Optimization: Algorithms and Complexity , 1981 .
[14] K. Ball. Volumes of sections of cubes and related problems , 1989 .
[15] J. Alonso,et al. Convex and Discrete Geometry , 2009 .
[16] Ramírez Alfonsin,et al. The diophantine frobenius problem , 2005 .
[17] J. Vaaler. A geometric inequality with applications to linear forms , 1979 .
[18] Enrique Treviño,et al. The multidimensional Frobenius problem , 2011 .
[19] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[20] R. Graham,et al. On a linear diophantine problem of Frobenius , 1972 .
[21] Andrzej Schinzel,et al. A Property of Polynomials with an Applicationto Siegel’s Lemma , 2002 .
[22] Jeffrey Shallit,et al. Unbounded Discrepancy in Frobenius Numbers , 2011, Integers.
[23] Matthias Beck,et al. A formula related to the Frobenius problem in two dimensions , 2004 .