The thermal conductivities of thin films of amorphous Si a-Si deposited by hot-wire chemical vapor deposition HWCVD are measured by time-domain thermoreflectance TDTR . Amorphous Si samples prepared at the National Renewable Energy Laboratory NREL show an anomalous enhancement in thermal conductivity compared to other forms of a-Si and compared to the prediction of the model of the minimum thermal conductivity. The thermal conductivity of the NREL HWCVD a-Si samples also decreases with increasing frequency of the temperature fields used in the experiment. This frequency dependence of the thermal conductivity is nearly identical to the results of our previous studies of crystalline semiconductor alloys; a comparison of the frequency dependence to a phonon-scattering model suggests that Rayleigh-type scattering controls the mean-free path of 5 meV phonons in this material. Amorphous Si films prepared at University of Illinois U. Illinois do not show an enhanced thermal conductivity even though Raman vibrational spectra of the U. Illinois and NREL samples are nearly identical. Thus, the thermal conductivity of a-Si depends on details of the microstructure that are not revealed by vibrational spectroscopy and measurements by TDTR provide a convenient method of identifying novel microstructures in amorphous materials.