Quantum error correction in crossbar architectures

A central challenge for the scaling of quantum computing systems is the need to control all qubits in the system without a large overhead. A solution for this problem in classical computing comes in the form of so-called crossbar architectures. Recently we made a proposal for a large-scale quantum processor (Li et al arXiv:1711.03807 (2017)) to be implemented in silicon quantum dots. This system features a crossbar control architecture which limits parallel single-qubit control, but allows the scheme to overcome control scaling issues that form a major hurdle to large-scale quantum computing systems. In this work, we develop a language that makes it possible to easily map quantum circuits to crossbar systems, taking into account their architecture and control limitations. Using this language we show how to map well known quantum error correction codes such as the planar surface and color codes in this limited control setting with only a small overhead in time. We analyze the logical error behavior of this surface code mapping for estimated experimental parameters of the crossbar system and conclude that logical error suppression to a level useful for real quantum computation is feasible.

[1]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[2]  Austin G. Fowler,et al.  Quantum computing with nearest neighbor interactions and error rates over 1 , 2010, 1009.3686.

[3]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[4]  J. Siewert,et al.  Natural two-qubit gate for quantum computation using the XY interaction , 2002, quant-ph/0209035.

[5]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[7]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[8]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[9]  James R. Wootton,et al.  Proposal for a minimal surface code experiment , 2016, 1608.05053.

[10]  R. Ishihara,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2017, npj Quantum Information.

[11]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[12]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[13]  M. Veldhorst,et al.  Silicon CMOS architecture for a spin-based quantum computer , 2016, Nature Communications.

[14]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[15]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[16]  L. M. K. Vandersypen,et al.  Efficient controlled-phase gate for single-spin qubits in quantum dots , 2010, 1010.0164.

[17]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[18]  Tino Heijmen Soft Errors from Space to Ground: Historical Overview, Empirical Evidence, and Future Trends , 2011 .

[19]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[20]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[21]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[22]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[23]  L. DiCarlo,et al.  Scalable Quantum Circuit and Control for a Superconducting Surface Code , 2016, 1612.08208.

[24]  R. Lathe Phd by thesis , 1988, Nature.

[25]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[26]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[27]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[28]  Stephen D Bartlett,et al.  Ultrahigh Error Threshold for Surface Codes with Biased Noise. , 2017, Physical review letters.

[29]  Michelle Y. Simmons,et al.  A surface code quantum computer in silicon , 2015, Science Advances.

[30]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.